Skip to main content

Introduction to Drop-Surface Interactions

  • Conference paper
Drop-Surface Interactions

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 456))

Abstract

The interaction of drops with surfaces is an everyday occurrence that comprises a rich variety of fluid mechanical facets. Almost two and a half millenniums ago the phrase gutta cavat lapidem (dripping water hollows out a stone) was coined reflecting the erosive action of repetitively impinging drops. The first scientific investigations into certain aspects of drop impact were then conducted in the second half of the nineteenth century. Topics addressed at those times include the formation of vortex rings by drops impinging on liquid surfaces, drops floating on or bouncing off pools, the spreading of a drop of one liquid on the surface of another liquid, splashing and an instability of drops spreading on solid surfaces, the result of the instability being well-known from the formation of ink blots. These and further phenomena of drop-surface interactions will be discussed in the present and in the other chapters of this book. In this we will limit ourselves to the interaction of single drops with different surfaces. It will become clear that processes occurring during drop-surface interactions are governed by a great number of different branches not only of fluid mechanics but also of thermal sciences. Often, a detailed understanding of the processes of drop-surface interactions is not yet available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, W. F. (1999). Rain impact retrospective and vision for the future. Wear 233–235:25.

    Google Scholar 

  • Alkhimov, A. P., Kosarev, V. F. and Papyrin, A. N. (1990). A new method of ‘cold’ gas dynamic deposition. Sov. Phys. Dokl. 35:1047–1049.

    Google Scholar 

  • Anilkumar, A. V., Lee C. P. and Wang, T. G. (1991). Surface-tension-induced mixing following coalescence of initially stationary drops. Phys. Fluids A 3:2587–2591.

    Article  Google Scholar 

  • Armster, S. Q., Delplanque, J.-P., Rein, M. and Lavernia, E. J. (2002). Thermo-fluid mechanisms controlling droplet-based materials processes. Int. Materials Rev. (accepted for publication)

    Google Scholar 

  • Baird, M. H. I. (1960). The stability of inverse soap bubbles. Trans. Faraday Soc. 15:91–96.

    Google Scholar 

  • Benjamin, T. B. and Ellis, A. T. (1966). The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260:221–240.

    Article  Google Scholar 

  • Bennet, T. and Poulikakos, D. (1993). Splat-quench solidification: estimating the Maximum spreading of a droplet impacting a solid surface. J. Materials Science 28:963–970.

    Article  Google Scholar 

  • Birkhoff, G. (1960). Hydrodynamics. A Study in Logic, Fact and Similitude. Princeton University Press, Princeton, 1960.

    Google Scholar 

  • Borner, H. and Schmidt, D. W. (1985). Investigation of large-scale vortex rings in He II by acoustic measurements of circulation. In: Meier, G. E. A. and Obermeier, F. (eds.), Flow of real fluids, Springer-Verlag, Berlin, 135–146.

    Chapter  Google Scholar 

  • Brunton, J. H. and Camus, J. J. (1970). The flow of a liquid drop during impact. In: Fyall, A. A. and King, R. B. (eds.) Proc. 3rd Int. Conf. Rain Erosion and Associated Phenomena Meersburg, West-Germany (RAE, 1970)

    Google Scholar 

  • Chandra, S. and Avedesian, C. T. (1991). On the collision of a droplet with a solid surface. Proc. R. Soc. London 432:13–41.

    Article  Google Scholar 

  • Chow, L. C., Sehmbey, M. S., and Pais, M. R. (1997). High Heat Flux Spray Cooling. In: Tien, C.-L. (ed.), Ann. Rev. Heat Transfer 8, Begell House, New York, 291–318.

    Google Scholar 

  • Cresswell, R. W. and Morton, B. R. (1995). Drop-formed vortex rings — The generation of vorticity. Phys. Fluids 7:1363. (Enlarged photographs are presented in a preprint, published as: Applied Mathematics Reports and Preprints 94/21, Monash University, 1994.)

    Article  MathSciNet  Google Scholar 

  • Dell’Aversana, P., Banavar J. R. and Koplik, J. (1996). Suppression of coalescence by shear and temperature gradients. Phys. Fluids 8:15.

    Article  Google Scholar 

  • Dooley, B. S., Warncke, A. E., Gharib M. and Tryggvason, G. (1997). Vortex ring generation due to the coalescence of a water drop at a free surface. Exp. in Fluids 22:369.

    Article  Google Scholar 

  • Elliot, T. A. and Ford, D. M. (1972). Dynamic contact angles. Trans. Faraday Soc. 681:1814–1823.

    Article  Google Scholar 

  • Engel, O. G. (1955). Waterdrop Collisions With Solid Surfaces. J. Research NBS 54:281–298.

    Article  MATH  Google Scholar 

  • Fukumoto, M. and Huang, Y. (1999). Flattening mechanism in thermal sprayed nickel particle impinging on flat substrate surface. J. Thermal Spray Techn. 8:427–432.

    Article  Google Scholar 

  • Gilbarg, D. and Anderson, R. A. (1948). Influence of Atmospheric Pressure on the Phenomena Accompanying the Entry of Spheres in Water. J. Appl. Phys. 19:127.

    Article  Google Scholar 

  • Hsiao, M., Lichter, S. and Quintero, L. G. (1988). The critical Weber number for vortex and jet formation for drops impinging on a liquid pool. Phys. Fluids 31:3560–3562.

    Article  Google Scholar 

  • Kientzler, J. C., Arons, A. B., Blanchard, D. C. and Woodcock, A. H. (1954). Photographic Investigation of the Projection of Droplets by Bubbles Bursting at a Water Surface. Tellus 6:1–7.

    Article  Google Scholar 

  • Kutter, V. (1916). Die Anwendung von Wirbelringen zur Bestimmung von Oberflächenspannungen. Phys. Zeitschrift 17:573–579.

    Google Scholar 

  • Lesser, M. and Field, J. E. (1983). The impact of compressible liquids. Annu. Rev. Fl. Mech. 15:97–122.

    Article  Google Scholar 

  • Mao, T., Kuhn, D. C. S., and Honghi Tran (1997). Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces. AlChE J. 43(9):2169–2179.

    Article  Google Scholar 

  • May, A. (1952). Vertical Entry of Missiles into Water. J. Appl. Phys. 23:1362.

    Article  Google Scholar 

  • Mundo, C., Sommerfeld, M. and Tropea, C. (1995). Droplet wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiphase Flow 21:151–173.

    Article  MATH  Google Scholar 

  • Pizolla, P. A., Roth, S. and De Forest, P. R. (1986a). Blood Droplet Dynamics — I. J. Forensic Sciences 31:36.

    Google Scholar 

  • Pizolla, P. A., Roth, S. and De Forest, P. R. (1986b). Blood Droplet Dynamics — II. J. Forensic Sciences 31:50.

    Google Scholar 

  • Poddubenko, V. V. and Yablonik, R. M. (1990). Impact of a droplet on a solid surface. Fluid Mech. Sov. Res. 19(3): 111–116.

    Google Scholar 

  • Poulikakos, D. and Waldvogel, J. M. (1996). Heat Transfer and Fluid Dynamics in the Process of Spray Deposition. Advance in Heat Transfer 28:1.

    Article  Google Scholar 

  • Prosperetti, A. and Oguz, H. N. (1993). The impact of drops on liquid surfaces and the underwater noise of rain. Ann. Rev. Fluid Mech. 25:577–602.

    Article  Google Scholar 

  • Pumphrey, H. C. and Elmore, P. A. (1990). The entrainment of bubbles by drop impacts. J. Fluid Mech. 220:539–567.

    Article  Google Scholar 

  • Pumphrey, H. C. and Walton, A. J. (1988). Experimental study of the sound emitted by water drops impacting on a water surface. European J. Phys. 9:225–231.

    Article  Google Scholar 

  • Rein, M. and Meier, G.E.A. (1988). Numerical Simulation of the Dynamics of Cavitation Bubble Fields Generated by Strong Expansion Waves. In: Furuya, O. (ed.), Cavitation and Multiphase Flow Forum — 1988, ASME, New York, 40–44.

    Google Scholar 

  • Rein, M. and Meier, G.E.A. (1990a). On the Dynamics of Heterogeneous Shock Cavitation. Acustica 71:1–13.

    Google Scholar 

  • Rein, M. and Meier, G.E.A. (1990b). On the Influence of Different Parameters on Heterogeneous Shock Cavitation. J. Acoust. Soc. Am. 88:1921–1928.

    Article  Google Scholar 

  • Rein, M. (1993). Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12:61.

    Article  Google Scholar 

  • Rein, M. (1995a). Wave phenomena during droplet impact. In: Morioka, S. and van Wijngaarden, L. (eds.), IUTAM Symposium on Waves in Liquid/Gas and Liquia/Vapor Two-Phase Systems, Kluwer Academic Publishers, 171–190.

    Chapter  Google Scholar 

  • Rein, M. (1995b). Nonlinear analysis of two-dimensional compressible liquid-liquid impact. European J. Mech. B/Fluids 14:301–322.

    MathSciNet  MATH  Google Scholar 

  • Rein, M. (1996). The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306:145.

    Article  Google Scholar 

  • Rein, M. (2002). Capillary effects at newly formed liquid-liquid contacts. Phys. Fluids 14:411–414.

    Article  MathSciNet  Google Scholar 

  • Richard, D. and Quéré, D. (2000). Bouncing water drops. Europhysics Letters 50:769–775.

    Article  Google Scholar 

  • Scheller, B. L. and Bousfield, D. W. (1995). Newtonian Drop Impact with a Solid surface. AIChE J. 41(6): 1357–1367.

    Article  Google Scholar 

  • Schotland, R. M. (1960). Experimental Results Relating to the Coalescence of Water Droplets with Water Surfaces. Disc. Faraday Soc. 30:72.

    Article  Google Scholar 

  • Sigler, J. and Mesler, R. (1990). The Behavior of the Gas Film Formed upon Drop Impact with a Liquid Surface. J. Colloid Interface Sci. 134:459.

    Article  Google Scholar 

  • Stow, C. D. and Hadfield, M. G. (1981). An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. London A 373:419–441.

    Article  Google Scholar 

  • Stuhlman Jr., O. (1932). The Mechanics of Effervescence. Physics (J. Appl. Phys.) 2:457–466.

    Google Scholar 

  • Thompson, J. J. and Newall, H. F. (1885). On the Formation of Vortex Rings by Drops falling into Liquids, and some allied Phenomena. Proc. R. Soc. London 39:417.

    Article  Google Scholar 

  • Thoroddson, S. T. and Sakakibara, J. (1998). Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10:1359–1374.

    Article  Google Scholar 

  • Tomlinson, C. (1861). On the cohesion figures of liquids. Phil. Mag. Ser.4 22:249–261.

    Google Scholar 

  • Tomlinson, C. (1864). On the cohesion figures of liquids. Phil. Mag. Ser.4 28:354–364.

    Google Scholar 

  • van Wijngaarden, L. (1968). On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33:465–474.

    Article  MATH  Google Scholar 

  • Vardelle, A., Themelis, N. J., Dussoubs, B., Vardelle, M. and Fauchais, P. (1997). Transport and chemical rate phenomena in plasma sprays. High Temp. Material Processes 1:295–313.

    Google Scholar 

  • Walzel, P. (1980). Zerteilgrenze beim Tropfenaufprall. Chem.-Ing. Tech. 52:338–339.

    Article  Google Scholar 

  • Worthington, A. M. (1876). On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. London 25:261–271.

    Article  Google Scholar 

  • Wu, J. Z. and Wu, J. M. (1996). Vorticity dynamics on boundaries. Adv. Appl. Mech. 32:119.

    Article  Google Scholar 

  • Yao, S.-C. (1994). Dynamics and Heat Transfer of Impacting Sprays. In: Tien, C.-L. (ed.), Ann. Rev. Heat Transfer, Begell House, New York, 351–382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this paper

Cite this paper

Rein, M. (2002). Introduction to Drop-Surface Interactions. In: Rein, M. (eds) Drop-Surface Interactions. CISM International Centre for Mechanical Sciences, vol 456. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2594-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2594-6_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83692-7

  • Online ISBN: 978-3-7091-2594-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics