Skip to main content

Modelling of subsidence due to water or hydrocarbon withdrawal from the subsoil

  • Chapter
Environmental Geomechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 417))

Abstract

Subsidence induced by human activity is experienced in many parts of the world. It is due either to withdrawal of underground fluids such as water, oil or gas, infiltration of water or due to mining activity. Its effects are sometimes dramatic both in the extension of the affected area and in the amount of surface lowering. But also relatively small amounts of surface lowering may have serious consequences if the affected area is located in coastal regions. Surface subsidence due to water withdrawal, for industrial or agricultural purposes has received most attention. A case book by Poland (1984) contains a collection of many documented cases and the most spectacular ones are listed here. For each case the amount of measured subsidence is given, the depth of the exploited layers, the areal extent of the involved region and the period when the phenomenon was observed; if the symbol + follows a date this means that the phenomenon was still active at the indicated date. The chosen cases are that of the Cheshire district in England (15m, 100–300m, 1500km2, 1533–1977), Haranomachi City in Japan (2m, 100–200m, 25km2, 1965–1978+), Tokyo (4.59m, 0400m and 800–2000m, 3240km2, 1918–1975+), Wairakei, New Zealand (6–7m, 250–800m, 30km2, 1952–1975+), Santa Clara valley in California (4.1m, 50–330m, 650km2, 1918–1970), San Joaquin valley, also in California (9m, 60–900m, 6200km2, 1930–1975), Tulare-Wasco, USA (4.3m, 60–700m, 3680km2, 1930–1970), Huston-Galveston, USA (2.75m, 60–900m, 12000km2, 1943–1973+) Mexico City (9m, 0–50m, about 225km2, 1891–1978), Po — delta (3.2m, 100–600m, 2600km2, 1951–1966), Ravenna (1.2m, 80–500m, about 600km2, 1955–1977+) and Venice (0.15m, 70–350m, about 400km2, 1952–1970) in Italy. Wairakei is a geothermal area; the subsidence of Ravenna is due to the combined effects of water withdrawal from the upper layers and the exploitation of deep gas reservoirs (at about 1800 m depth). In the Po delta water was pumped because it contained dissolved gas, which was separated at the surface due to the change of its solubility with pressure. In all these cases pumping of water disturbs the hydraulic equilibrium and acts as a forcing function on the coupled system soils plus water. Since the overburden remains constant, a decrease of water pressure due to pumping means an increase in effective stress, which produces deformation in the exploited layers. This deformation is transmitted to the surface and manifests itself as subsidence. The phenomenon is time dependent and continues until a new equilibrium state is reached. If water is pumped from superficial layers, desaturation and capillary effects may complicate the picture.

I wish to thank my co-workers G. Bolzon, R. Matteazzi, V. Salomoni, L. Simoni, H.W. Zhang, for their contributions to subsidence modelling over the last years and particularly D. Boso for her help in the preparation of the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AGIP (1996). Progetto Alto Adriatico - Studio di impatto ambientale, AGIP, San Donato, Italy.

    Google Scholar 

  • Alonso E.E., Gens A. and Josa A. (1990). A constitutive model for partially saturated soils. Géotechnique, 40, 405–430.

    Article  Google Scholar 

  • Antonelli R., Fabbri P., Iliceto V., Majorana C., Previatello P., Schrefler B. A. And Sedea R. (1995). The Geothermal Euganean field: a subsidence modelling approach. In Proceedings of the World Geothermal Congress, Florence, International Geothermal Association, pp. 1263–68.

    Google Scholar 

  • Barends F. B. J., van der Poel J. T. and Teunissen J.A.M. (1995). Geomechanical simulation of static and dynamic subsidence by reservoir compaction. Land subsidence, Barends, Brouwer & Schröder Eds, Balkema, Rotterdam, 237–245.

    Google Scholar 

  • Biot, M. A. (1956). General theory of three — dimensional consolidation. J. Appl. Phys., 12, 155–64.

    Article  Google Scholar 

  • Bishop A.W. (1959). The principle of effective stress. Teknisk Ukeblad, 39, 859–863.

    Google Scholar 

  • Bolzon G., Schrefler B.A. and Zienkiewicz O.C. (1996). Elastoplastic soil constitutive laws generalised to partially saturated states, Géotechnique, 46, 279–289.

    Article  Google Scholar 

  • Brignoli, M., Santarelli, F.J. and Papamichos, E. (1995). Capillary effects in sedimentary rocks: Application to reservoir water-flooding. In Rock Mechanics, Proc. 35th U.S. Symposium, Eds. J.J.K. Daemen–R.A. Schultz, Balkema, Rotterdam, 619–625.

    Google Scholar 

  • Brooks, R. N. and Corey A. T. (1992). Properties of Porous Media Affecting Fluid Flow. J. Irrig. Drain Div. Am. Soc. Civ. Eng., (IR2), 61–68.

    Google Scholar 

  • Carbognin L., Gatto P., Mozzi G., Gambolati G. And Ricceri G. (1976). New trend in the subsidence of Venice. In Proceedings of the 2“ 1 International Symposium on Land Subsidnce, Anaheim CA, IAHS (International Association of Hydrological Aciences), 121, 65–81.

    Google Scholar 

  • Cheng A. H. D. and Ligget J. A. (1984). Boundary integral equation method for linear porous-elasticity with applications to soil consolidation. Int. J. Num. Meth. Engng, 20, 255–78.

    Article  MATH  Google Scholar 

  • Evangelisti G. and Poggi B. (1970). Sopra i fenomeni di deformazione dei terreni da variazione di strato, Atti Acc. delle Scienze dell’Istituto di Bologna, Serie II, 6.

    Google Scholar 

  • Fredlund, D. G., Morgenstern, N. R., and Widger, R. A. (1978). The shear strength of unsaturated soils. Can. Geotech. J., 15, 313–321.

    Article  Google Scholar 

  • Gambolati G. (1997). Deviation from the Theis solution in aquifers undergoing three-dimensional consolidation. Water Resources Research., 13, 62–68.

    Article  Google Scholar 

  • Gambolati G., Gatto P. And Freeze A. (1974). Mathematical simulation of the subsidence of Venice, 2, results. Water Resources Research, 10 (3), 563–77.

    Article  Google Scholar 

  • Gambolati G., Ricceri G., Bertoni W., Brighenti G. and Vuillermin E. (1991). Mathematical simulation of the subsidence of Ravenna. Water Resources Res., 27, 2899–2918.

    Article  Google Scholar 

  • Gambolati G., Teatini P. and Bertoni W. (1995). Numerical prediction of land subsidence over Dosso degli Angeli gas field, Ravenna, Italy: In Current research and case studies of land subsidence, Proceedings J.F. Poland Symp. on Land subsidence,Sacramento, (CA).

    Google Scholar 

  • Gatto P. (1991). II sottosuolo del litorale veneziano. Tech. Rep. 108, Ist. Stud. Din. Grandi Masse, Venice.

    Google Scholar 

  • Geertsma J. and Van Opstal G. (1973). A numerical technique for predicting subsidence above compacting reservoirs, based on the nucleus of strain concept. Verhandelingen Kon. Ned. Geol. Mijnbouwk. Gen., 28, 63–78.

    Google Scholar 

  • Hassanizadeh M. and Gray W. G. (1979). General conservation equations for multiphase systems: 2, mass, energy and momentum equations. Adv. Water Resources, 2, 191–203.

    Article  Google Scholar 

  • Hassanizadeh M. and Gray W. G. (1980). General conservation equations for multiphase systems: 3, constitutive theory for porous media flow. Adv. Water Resources, 3, 25–40.

    Article  Google Scholar 

  • Kanouk-Nukulchai W. and Chau K. T. (1988). Fundamental solutions and boundary element for saturated porous halfspace. In Computational Mechanics ‘88 S. N. Atluri and G. Yagawa eds, Springer-Verlag, 63, vi 1–2.

    Google Scholar 

  • Laloui, L., Geiser, F., Vulliet, L., Li, X. L., Bolle, A. and Charlier, R. (1997). Characterization of the mechanical behaviour of an unsaturated sandy silt. In Proc XIVth Int. Conf. On Soil Mechanics and Foundation Engineering, Hambourg, 347–350.

    Google Scholar 

  • Lewis R. W. and Schrefler B. A. (1978a). A finite element analysis of surface subsidence. In Evaluation and Prediction of Subsidence, S. K. Saxena ed., ASCE, New York, pp. 400–16.

    Google Scholar 

  • Lewis R. W. and Schrefler B. A. (1978b). A fully coupled consolidation model of the subsidence of Venice. Water Resources Research, 14 (2), 223–30.

    Article  MathSciNet  Google Scholar 

  • Lewis R. W. and Schrefler B. A. (1998). The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester.

    MATH  Google Scholar 

  • Lewis, R. W. and Sukirman Y. (1993). Finite element modeling of three–phase flow in deforming saturated oil reservoirs. Int. J. Anal. Num. Meth. Geom., 18, 619–639.

    Article  Google Scholar 

  • Liakopulos A. C. (1965). Transient flow through unsaturated porous media. Ph.D. Thesis, University of California at Berkley.

    Google Scholar 

  • McNamee J. and Gibson R. E. (1960). Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum. Q. J. Mech. Appl. Math., 13, 210–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Pao W. K. S (2000). Aspect of continuum modelling and numerical simulations of coupled multiphase deformable non - isothermal porous continua. Ph.D. thesis, University of Wales, Swansea.

    Google Scholar 

  • Papamichos E. and Schei G. (1998). Characterization of Adriatic soft weak sediments for subsidence studies. IKUPetroleum Research, Trondheim, Norway, Report Nr. 33.0693.00/01/01/98.

    Google Scholar 

  • Papamichos E., Brignoli M. and Schei G. (1998). Compaction in soft weak rocks due to water flooding. Proc. SPE/ISRMEurock, 411–417.

    Google Scholar 

  • Pastor M., Zienkiewicz O.C. and Chan A.H.C. (1990). Generalized plasticity and the modelling of soil behaviour. Int. J. Numer. Anal. Methods Geomech., 14, 151–190.

    Article  MATH  Google Scholar 

  • Perez-Foguet A., Rodrigez-Ferran A. and Huerta A. (1999). Numerical differentiation for non trivial consistent tangent matrices: an application to the MRS-Lade model. International Journal for Numerical Methods in Engineering, 48 (2): 159–184.

    Article  Google Scholar 

  • Poettgens J. J. E. and Broewer F. J. J. (1991). Land Subsidence due to gas extraction in the northern part of the Netherlands. In Land subsidence, Proc. Fourth Symposium on Land Subsidence, IAHS Publ. N. 200, 99–108.

    Google Scholar 

  • Poland J. F. ed. (1984). Guidebook to studies of land subsidence due to groundwater withdrawal, Unesco, Paris.

    Google Scholar 

  • Ricceri G. and Butterfield R. (1974). An analysis of compressibility data from a deep borehole in Venice. Géotechnique, 24 (2), 175–191.

    Article  Google Scholar 

  • Ricceri G. and Schrefler B. A. (1978–79). Condizioni al contorno, leggi costitutive e parametri geotecnici nella simulazione dei processi di subsidenza. In Atti e Mem. Accademia Patavina di Scienze, Lettere ed Arti,Vol XC1, Parte II, Classe di Scienze MM. e NN..

    Google Scholar 

  • Schoonbeek J. B. (1976). Land subsidence as a result of natural gas extraction in the province of Groningen. Soc. Petroleum Engineers of AIME, Preprint.

    Google Scholar 

  • Schrefler B. A. (1978). Investigation of land subsidence in the lower Po valley using a finite element consolidation model. In Proceedings of the XXth ICES UGW Conference, Vol. 1, EIDA, EUROCOPY, ISPRA; see also ICES J: 10, 38–57.

    Google Scholar 

  • Schrefler B. A. and Simoni L. (1997). La subsidenza copra i giacimenti di gas naturale, Accademia Patavina di Scienze, Lettere ed Arti., Vol. CIX, Parte II, 85–113.

    Google Scholar 

  • Schrefler B. A., Lewis R. W. and Norris V. A. (1977). A case study of surface subsidence of the Polesine area. Int. J. Num. Anal. Meth. Geomech. 1, 377–386.

    Article  Google Scholar 

  • Schrefler B. A., Matteazzi R., Gawin D. And Wang X. (2000). Two parallel computing methods for coupled thermo–hydro–mechanical problems. Computer Aided Civil and Infrastructure Engineering, 15, 176–188.

    Article  Google Scholar 

  • Schrefler B. A., Salomoni V. and Simoni L. (1997). Modelling of Soil Deformation Induced by Offshore and Onshore Gas Recovery. In Proc. Workshop on Baugrund-Tragwerk-Interaction, 21.11.97. Technische Universität Darmstadt, Heft 38 Darmstadt, 27–38.

    Google Scholar 

  • Schrefler B. A., Simon. i L. and Salomoni V. (1998). Prediction of surface subsidence above gas reservoirs. Civil Infrastructure Systems: Intelligent Renewal, Casciati F., Maceri F., Singh M. P., & Spanos P. Eds., World Scientific, Singapore, 315–327.

    Google Scholar 

  • Schrefler, B. A. and Scotta, R. (2001). A fully coupled dynamic model for two-phase fluid flow in de-formable porous media. In print on CMAME.

    Google Scholar 

  • Schrefler, B. A. and Simoni, L. (2000). An Elastoplastic Constitutive Model for Partially Saturated Soils. In Handbook of Material Behavior, Nonlinear Models and Properties. J. Lemaitre ed., Academic Press, San Diego (California).

    Google Scholar 

  • Schroeder Ch., Bois A. P., Maury V. and Hallé G. (1998). Water/Chalk (or collapsible soil) interaction: Part II, Results of tests performed in laboratory on Liche Chalk to calibrate waterchalk models. SPE/ISRM 47587, Trondheim.

    Google Scholar 

  • Serandrei-Barbero R. (1973). Indagine sullo sfruttamento artesiano nel comune di Venezia 1846–1970. Tech. Rep. 31, CNR, Lab. Stud. Din. Grandi Masse, Venice.

    Google Scholar 

  • Simo J. C. and Hughes T. J. R. (1998). Computational Inelasticity. NewYork: Spring-Verlag Inc.

    MATH  Google Scholar 

  • Simoni L., Salomoni V. and Schrefler B.A. (1999). Elastoplastic subsidence models with and without capillary effects. Computer Methods in Applied Mechanics and Engineering, 171, 491–502.

    Article  MATH  Google Scholar 

  • Simoni, L., Schrefler, B. A. (2001). Parameter identification for a suction dependent plasticity model. I. J. Anal. Num. Meth. Geom., 25, 263–272.

    Article  MATH  Google Scholar 

  • Standing M.B. (1952). Volumetric and phase behaviour of oil field hydrocarbon systems. Reinhold, New York.

    Google Scholar 

  • von Terzaghi K. (1983). Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzungsber. Akad. Wiss., Math. — Naturwiss, Section IIa, 132, (3/4), 125–38.

    Google Scholar 

  • Zhang H. W., Heeres O. M., de Borst R. and Schrefler B. A. (2001). Implicit integrati0on of a generalized plasticity constitutive model for partially saturated soil. In print in Engineering Computations.

    Google Scholar 

  • Zienckiewicz O. C. and Taylor R. (1991). The finite element method. Vols. 1 and 2, McGraw-Hill, New York.

    Google Scholar 

  • Zienkiewicz O.C., Chan A.H.C., Pastor M., Schrefler B.A. and Shiomi T. (1999). Computational geomechanics with special reference to earthquake engineering. Wiley, Chichester.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Schrefler, B.A. (2001). Modelling of subsidence due to water or hydrocarbon withdrawal from the subsoil. In: Schrefler, B.A. (eds) Environmental Geomechanics. International Centre for Mechanical Sciences, vol 417. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2592-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2592-2_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83680-4

  • Online ISBN: 978-3-7091-2592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics