Skip to main content

Computational Plasticity

  • Chapter
Environmental Geomechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 417))

Abstract

An introduction into standard elasto-plasticity is presented. Return mapping algorithms are introduced, and the consistent linearization of the equations ensuing from standard elasto-plastic models is given. Then, generalized plasticity is introduced, and its implicit integration is shown. Further, the theory is applied to a generalized plasticity model for sand. Subsequently, the same is done for hypoplasticity. It follows that standard plasticity, generalized plasticity and hypoplasticity can be numerically treated in a unified algorithmic setting. Finally, numerical examples are given to illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auricchio, E, and Taylor, R. L. (1995). Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity. International Journal of Plasticity 11 (1): 65–98.

    Article  MATH  Google Scholar 

  • Borja, R. (1991). Cam-Clay plasticity, Part II, Implicit integration of constitutive equations based on a nonlinear stress predictor. Computer Methods in Applied Mechanics and Engineering 88: 225–240.

    Article  MathSciNet  MATH  Google Scholar 

  • Bushnell, D. (1977). A strategy for the solution of problems involving large deflections, plasticity and creep. International Journal for Numerical Methods in Engineering 11: 682–708.

    Article  Google Scholar 

  • de Borst, R. (1986). Non-linear analysis of frictional materials. Ph.D. Dissertation, Delft University of Technology.

    Google Scholar 

  • Desrues, J. (1998). Localization patterns in ductile and brittle geomaterials. In de Borst, R., and van der Giessen, E., eds., Material Instabilities in Solids, 137–158.

    Google Scholar 

  • Golub, G. H., and van Loan, C. F. (1996). Matrix Computations, third edition. The John Hopkins University Press, London.

    Google Scholar 

  • Green, A. E. (1956). Hypoelasticity and plasticity. Proc. Roy. Soc. 234: 46–59.

    Article  MATH  Google Scholar 

  • Kolymbas, D. (2000). Introduction to Hypoplasticity. Balkema, Rotterdam.

    Google Scholar 

  • Krieg, R. D., and Krieg, D. B. (1977). Accuracies of numerical solution methods for the elastic-perfectly plastic model. Journal of Pressure and Vessel Technology 99.

    Google Scholar 

  • Larsson, R., and Runesson, K. (1996). Implicit integration and consistent linearization for yield criteria of the mohr-coulomb type. Mechanics of Cohesive-Frictional Materials 1: 367–383.

    Article  Google Scholar 

  • Lemaitre, J., and Chaboche, J.-L. (1990). Mechanics of Solid Materials. Cambridge University Press. Lubliner, J. (1974). A simple theory of plasticity. International Journal of Solids and Structures 10: 313–319.

    Google Scholar 

  • MrĂ´z, Z., and Zienkiewicz, O. C. (1984). Uniform formulation of constitutive equations for clays and sand. In Desai, C. S., and Gallagher, R. H., eds., Mechanics of Engineering Materials, 415–450.

    Google Scholar 

  • Nayak, G. C., and Zienkiewicz, O. C. (1972). Elastoplastic stress analysis. A generalization of various constitutive equations including stress softening. International Journal for Numerical Methods in Engineering 5: 113–135.

    Article  MATH  Google Scholar 

  • Ortiz, M., and Popov, E. P. (1985). Accuracy and stability of integration algorithms for elastoplastic constitutive equations. International Journal for Numerical Methods in Engineering 21: 1561–1576.

    Article  MathSciNet  MATH  Google Scholar 

  • Ortiz, M., and Simo, J. C. (1986). An analysis of a new class of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering 23: 353–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, D. R. J., and Hinton, E. (1980). Finite Elements in Plasticity: Theory and Practice. Pineridge Press, Swansea.

    MATH  Google Scholar 

  • Pastor, M., Zienkiewicz, O. C., and Chan, A. C. (1990). Theme/Feature paper. Generalized plasticity and the modeling of soil behavior. International Journal for Numerical and Analytical Methods in Geomechanics 14: 151–190.

    Article  MATH  Google Scholar 

  • PĂ©rez-Foguet, A., Rodriguez-Ferran, A., and Huerta, A. (1998). Numerical differentiation for local and global tangent operators in computational plasticity. Technical Report 144, CIMNE Barcelona.

    Google Scholar 

  • Potts, D., Doumas, G., and Vaughan, P. (1987). Finite element analysis of the direct shear box test. Geotechnique 37: 11–23.

    Article  Google Scholar 

  • Rice, J. R., and Tracey, D. M. (1971). Computational fracture mechanics. In S. J. Fence et al., ed., Proc.Symp.Num.Comp.Meth.Struct.Mech., 585–624. Academic Press, NewYork.

    Google Scholar 

  • Schreyer, H. L., Kulak, R. L., and Kramer, J. M. (1979). Accurate numerical solutions for elastic-plastic models. Journal of Pressure and Vessel Technology 101: 226–334.

    Article  Google Scholar 

  • Simo, J. C., and Taylor, R. L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering 48: 101–118.

    Article  MATH  Google Scholar 

  • von Wolffersdorff, P. A. (1996). A hypoplastic relation for materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials 1: 251–271.

    Article  Google Scholar 

  • Wu, W., and Bauer, E. (1992). A hypoplastic model for barotropy and pycnotropy of granular soils. In Kolymbas, D., ed., Modern Approaches to Plasticity, 225–246.

    Google Scholar 

  • Wu, W., and Niemunis, A. (1996). Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mechanics of Cohesive-Frictional Materials 1: 145–163.

    Article  Google Scholar 

  • Zienkiewicz, O. C., and Mroz, Z. (1984). Generalized plasticity formulation and applications to geome- chanics. In Desai, C. S., and Gallagher, R. H., eds., Mechanics of Engineering Materials, 655–680.

    Google Scholar 

  • Zienkiewicz, O. C., and Taylor, R. L. (1989). The Finite Element Method, 4-th ed. McGraw-Hill, Berkshire, England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

de Borst, R., Heeres, O. (2001). Computational Plasticity. In: Schrefler, B.A. (eds) Environmental Geomechanics. International Centre for Mechanical Sciences, vol 417. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2592-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2592-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83680-4

  • Online ISBN: 978-3-7091-2592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics