Theoretical and Numerical Methods in Environmental Continuum Mechanics Based on the Theory of Porous Media

  • Wolfgang Ehlers
  • Peter Ellsiepen
Part of the International Centre for Mechanical Sciences book series (CISM, volume 417)


Environmental continuum mechanics touches all kinds of problems arising from the necessity to successfully describe the behaviour of materials naturally existing in our surrounding. Following this, one has to consider mainly geomaterials like saturated, partially saturated or empty porous solids such as soil and rock or temperate ice. Geomaterials as well as further porous media like concrete, sinter materials, polymeric and metallic foams, living tissues, etc. basically fall into the category of multiphase materials, which can be described within the framework of a macroscopic continuum mechanical approach by use of the well-founded Theory of Porous Media (TPM).

Based on the concept of non-polar and micropolar materials, the present contribution outlines the continuum mechanical foundations of the TPM including the necessary set of constitutive equations for the description of elasto-plastic and elasto-viscoplastic frictional geomaterials with or without a viscous pore content. Furthermore, the discretization of the governing field equations and the basic numerical tools including time- and space-adaptive strategies are presented and included into the finite element tool PANDAS. Finally, a number of numerical examples exhibits the wide range of applications of the TPM approach to environmental problems like fluid flow in porous media, the consolidation problem and localization phenomena like the well-known biaxial experiment or the base failure and the slope failure problems.


Porous Medium Shear Band Error Indicator Seepage Velocity Volume Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R. (1977). Diagonally implicit Runge-Kutta methods for stiff O.D.E’s. SIAM J. Numer. Anal. 14: 1006–1021.MathSciNetCrossRefMATHGoogle Scholar
  2. Ammann, M. (1998). Wiedervernetzungsstrategien und Datentransfer in der adaptiven FEM. Diplomarbeit, Institut für Mechanik (Bauwesen), Universität Stuttgart, Stuttgart.Google Scholar
  3. Biot, M. A. (1941). General theory of three-dimensional consolidation. J. Appl. Phys. 12: 155–164.CrossRefMATHGoogle Scholar
  4. Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J. Acoust. Soc. Am. 28: 168–178.MathSciNetCrossRefGoogle Scholar
  5. Bowen, R. M. (1976). Theory of mixtures. In Eringen, A. C., ed., Continuum Physics, Volume HI. Academic Press, New York. 1–127.Google Scholar
  6. Bowen, R. M. (1980). Incompressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 18: 1129–1148.CrossRefMATHGoogle Scholar
  7. Bowen, R. M. (1982). Compressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 20: 697–735.CrossRefMATHGoogle Scholar
  8. Brenan, K. E., Campbell, S. L., and Petzold, L. R. (1989). Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. New York: North-Holland.MATHGoogle Scholar
  9. Brezzi, E, and Fortin, M. (1991). Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag.CrossRefMATHGoogle Scholar
  10. Brinkgreve, R. B. J. (1994). Geomaterial models and numerical analysis of softening. CIP-Gegevens Koniglijke Bibliotheek, Den Haag. Ph. D. thesis.Google Scholar
  11. Cash, J. R. (1979). Diagonally implicit Runge-Kutta formulm with error estimates. J. Inst. Maths Applics 24: 293–301.CrossRefMATHGoogle Scholar
  12. Coussy, O. (1995). Mechanics of Porous Continua. Wiley, Chichester.MATHGoogle Scholar
  13. de Boer, R., and Ehlers, W. (1986). Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 40, Universität-GHEssen.Google Scholar
  14. de Boer, R., Ehlers, W, Kowalski, S., and Plischka, J. (1991). Porous media - a survey of different approaches. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 54, Universität-GH-Essen.Google Scholar
  15. de Boer, R. (1982). Vektor-und Tenorrechnung für Ingenieure. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  16. de Boer, R. (1996). Highlights in the historical development of porous media theory: toward a consistent macroscopic theory. Applied Mechanics Review 49: 201–262.CrossRefGoogle Scholar
  17. de Borst, R. (1991). Simulation of strain localization: A reappraisal of the Cosserat continuum. Engineering Computations 8: 317–332.CrossRefGoogle Scholar
  18. Delesse, M. (1848). Pour déterminer la composition des roches. Annales des mines, 4. séries 13: 379–388.Google Scholar
  19. Desrues, J. (1990). Shear band initiation in granular materials: Experimentation and theory. In Darve, F., ed., Geomaterials: Constitutive Equations and Modelling. Elsevier Applied Science, London. 283–310.Google Scholar
  20. Diebels, S., and Ehlers, W. (1996a). Dynamic analysis of a fully saturated porous medium accounting for geometrical and material non-linearities. Int. J. Numer. Methods Eng. 39: 81–97.CrossRefMATHGoogle Scholar
  21. Diebels, S., and Ehlers, W. (1996b). On fundamental concepts of multiphase micropolar materials. Technische Mechanik 16: 77–88.Google Scholar
  22. Diebels, S., Ellsiepen, P., and Ehlers, W. (1998). A two-phase model for viscoplastic geomaterials. In Besdo, D., and Bogaz, R., eds., Dynamics of Continua (International Symposium, Physikzentrum Bad Honnef 1996), 103–112. Aachen: Shaker Verlag.Google Scholar
  23. Diebels, S., Ellsiepen, P., and Ehlers, W. (1999). Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phase model. Technische Mechanik 19: 19–27.Google Scholar
  24. Diebels, S. (1999). A micropolar theory of porous media: Constitutive modelling. Transport in Porous Media 34: 193–208.CrossRefGoogle Scholar
  25. Ehlers, W, and Droste, A. (1999). FE simulations of metal foams based on the macroscopic approach of the Theory of Porous Media. In Banhart, J., Ashby, M., and Fleck, N., eds., Proceedings of the International Conference of Metal Foams and Pomus Metal Structures. Verlag MIT, Bremen. 299-302.Google Scholar
  26. Ehlers, W., and Ellsiepen, P. (1997). Zeitschrittgesteuerte Verfahren bei stark gekoppelten FestkörperFluid-Problemen. Z angew. Math. Mech. 77: S81 - S82.MATHGoogle Scholar
  27. Ehlers, W, and Ellsiepen, P. (1998a). Adaptive Zeitintegrationsverfahren fair ein elastisch-viskoplastisches Zweiphasenmodell. Z angew. Math. Mech. 78: S361 - S362.MATHGoogle Scholar
  28. Ehlers, W, and Ellsiepen, P. (1998b). Zeit-und ortsadaptive Verfahren zur Berechnung von Scherbändern in porösen Materialien. In Mahnken, R., ed., Theoretische und numerische Methoden in der angewandten Mechanik mit Praxisbeispielen. Festschrift anläßlich der Emeritierung von Prof Dr.-Ing. E. Stein, Forschungs-und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, Bericht-Nr. F 98/4. Universität Hannover.Google Scholar
  29. Ehlers, W., and Kubik, J. (1994). On finite dynamic equations for fluid-saturated porous media. Acta Mech. 105: 101–317.MathSciNetCrossRefMATHGoogle Scholar
  30. Ehlers, W, and Markert, B. (2000). On the viscoelastic behaviour of fluid-saturated materials. Granular Matter 2, in press.Google Scholar
  31. Ehlers, W, and Volk, W. (1997). On shear band localization phenomena induced by elasto-plastic consolidation of fluid-saturated soils. In Owen, D. J. R., Orate, E., and Hinton, E., eds., Computational Plasticity–Fundamentals and Applications. CIMNE, Barcelona. 1657–1664.Google Scholar
  32. Ehlers, W., and Volk, W. (1998). On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic porous solid materials. Int. J. Solids and Structures 35: 4597–4617.CrossRefMATHGoogle Scholar
  33. Ehlers, W., Ellsiepen, P., Biome, P., Mahnkopf, D., and Marked, B. (1999). Theoretische und numerische Studien zur Lösung von Rand-und Anfangswertproblemen in der Theorie Poröser Medien, Abschlußbericht zum DFG-Forschungsvorhaben Eh 107/6–2. Bericht aus dem Institut fir Mechanik (Bauwesen), Nr. 99-II-1. Universität Stuttgart.Google Scholar
  34. Ehlers, W. (1989). Poröse Medien - ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 47, Universität-GH-Essen.Google Scholar
  35. Ehlers, W. (1993). Constitutive equations for granular materials in geomechanical context. In Hutter, K., ed., Continuum Mechanics in Environmental Sciences and Geophysics, CISM Courses and Lectures No. 337. Springer-Verlag, Wien. 313–402.Google Scholar
  36. Ehlers, W. (1995). A single-surface yield function for geomaterials. Arch. Appl. Mech. 65:246–259. Ehlers, W. (1996). Grundlegende Konzepte in der Theorie Poröser Medien. Technische Mechanik 16: 63–76.Google Scholar
  37. Eipper, G. (1998). Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen Medien. Dissertation, Bericht Nr. II-1 aus dem Institut für Mechanik (Bauwesen). Universität Stuttgart.Google Scholar
  38. Ellsiepen, P. (1999). Zeit-und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Dissertation, Bericht Nr. II-3 aus dem Institutfir Mechanik (Bauwesen). Universität Stuttgart.Google Scholar
  39. Eringen, A. C., and Edelen, D. G. B. (1972). On non local elasticity. Int. J. Engng. Sci. 10: 233–248.MathSciNetCrossRefMATHGoogle Scholar
  40. Eringen, A. C. (1981). On non-local plasticity. Int. J. Engng. Sci. 19: 1461–1474.MathSciNetCrossRefMATHGoogle Scholar
  41. Fritzen, P. (1997). Numerische Behandlung nichtlinearer Probleme der Elastizitäts-und Plastizitätstheorie. Dissertation am Fachbereich Mathematik, Technische Hochschule Darmstadt, Darmstadt.Google Scholar
  42. Gallimard, L., Ladevèze, P., and Pelle, J. P. (1996). Error estimation and adaptivity in elastoplasticity. Int. J. Numer. Methods Eng. 39: 189–217.CrossRefMATHGoogle Scholar
  43. Girkmann, K. (1963). Flächentragwerke. Wien: Springer-Verlag.CrossRefGoogle Scholar
  44. Hairer, E., and Wanner, G. (1991). Solving Ordinary Differential Equations - Stiff and Differential-Algebraic Problems, Volume 2 Berlin: Springer-Verlag.Google Scholar
  45. Hairer, E., Lubich, C., and Roche, M. (1989). The Numerical Solution of Differential Algebraic Equations by Runge-Kutta Methods. Berlin: Springer-Verlag.Google Scholar
  46. Hartmann, S., Lührs, G., and Haupt, P. (1997). An efficient stress algorithm with applications in viscoplasticity and plasticity. Int. J. Numer. Methods Eng. 40: 991–1013.CrossRefMATHGoogle Scholar
  47. Hartmann, S. (1998). Zur Berechnung inelastischer Festkörper mit der Methode der finiten Elemente. In Hartmann, S., Haupt, P., and Ulbricht, V., eds., Modellierung und Identifikation. Kassel: Gesamthochschul-Bibliothek Verlag. 119–130.Google Scholar
  48. Hassanizadeh, S. M., and Gray, W. G. (1979a). General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Resources 2: 131–144.CrossRefGoogle Scholar
  49. Hassanizadeh, S. M., and Gray, W G. (1979b). General conservation equations for multi-phase systems: 2. Mass, momentum, energy and entropy equations. Adv. Water Resources 2: 191–203.CrossRefGoogle Scholar
  50. Haupt, P. (1993). Foundation of continuum mechanics. In Hutter, K., ed., Continuum Mechanics in Environmental Sciences and Geophysics, CISM Courses and Lectures No. 337. Springer-Verlag, Wien. 1–77.Google Scholar
  51. Kelly, P. D. (1964). A reacting continuum. Int. J. Engng. Sci. 2: 129–153.CrossRefMATHGoogle Scholar
  52. Kossaczkÿ, I. (1994). A recursive approach to local mesh refinement in two and three dimensions. J. Comp. Appl. Math. 55: 275–288.CrossRefMATHGoogle Scholar
  53. Mitchell, W. E (1991). Adaptive refinement for arbitrary finite-element spaces with hierarchical bases. J. Comp. AppL Math. 36: 65–78.CrossRefMATHGoogle Scholar
  54. Mow, V. C., Gibbs, M. C., Lai, W. M., Zhu, W. B., and Athanasiou, K. A. (1989). Biphasic indentation of articular cartilage–H. A numerical algorithm and an experimental study. J. Biomechanics 22: 853–861.CrossRefGoogle Scholar
  55. Mühlhaus, H.-B., and Aifantis, E. C. (1991). A variational principle for gradient plasticity. Int. J. Solids Structures 28: 845–857.CrossRefMATHGoogle Scholar
  56. Needleman, A. (1988). Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Engrg. 67: 69–85.CrossRefMATHGoogle Scholar
  57. Nowacki, W. (1986). Theory of Asymmetric Elasticity. Pergamon Press, Oxford.MATHGoogle Scholar
  58. Ortiz, M., and Quigley, J. J. (1991). Adaptive mesh refinement in strain localization problems. Comput. Methods Appl. Mech. Engrg. 90: 781–804.CrossRefGoogle Scholar
  59. Perzyna, P. (1966). Fundamental problems in viscoplasticity. Adv. AppL Mech. 9: 243–377.CrossRefGoogle Scholar
  60. Schrefler, B. A., Majorna, C. E., and Sanavia, L. (1995). Shear band localization in saturated porous media. Arch. Mech. 47: 577–599.MATHGoogle Scholar
  61. Shewchuk, J. R. (1996). Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. Pittsburgh, Pennsylvania: School of Computer Science, Carnegie Mellon University.“quake/triangle.html.Google Scholar
  62. Simo, J. C., and Taylor, R. L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Engrg. 48: 101–118.CrossRefMATHGoogle Scholar
  63. Skempton, A. W. (1960). Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In Bjerrum, L., Casagrande, A., Peck, R. B., and Skempton, A. W., eds., From Theory to Practice in Soil Mechanics. Wiley, New York. 42–53.Google Scholar
  64. Steinmann, P. (1994). A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Structures 31: 1063–1084.MathSciNetCrossRefMATHGoogle Scholar
  65. Strehmel, K., and Weiner, R. (1995). Numerik gewöhnlicher Differentialgleichungen. Stuttgart: Teubner. Szab, B., and Babulka, I. (1991). Finite Element Analysis. New York: John Wiley & Sons.Google Scholar
  66. Terzaghi, K., and Jelinek, R. (1954). Theoretische Bodenmechanik. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  67. Truesdell, C., and Toupin, R. A. (1960). The classical field theories. In Flügge, S., ed., Handbuch der Physik, Volume III/l. Springer-Verlag, Berlin. 226–902.Google Scholar
  68. Truesdell, C. (1984). Thermodynamics of diffusion. In Truesdell, C., ed., Rational Thermodynamics. Springer-Verlag, New York, 2nd edition. 219–236.Google Scholar
  69. Volk, W. (1999). Untersuchung des Lokalisierungsverhaltens mikropolarer poröser Medien mit Hilfe der Cosserat-Theorie. Dissertation, Bericht Nr. II-2 aus dem Institut für Mechanik (Bauwesen). Universität Stuttgart.Google Scholar
  70. Wittekindt, J. (1991). Die numerische Lösung von Anfangs-Randwertproblemen zur Beschreibung in-elastischen Werkstoffverhaltens. Dissertation am Fachbereich Mathematik, Technische Hochschule Darmstadt, Darmstadt.Google Scholar
  71. Woltman, R. (1794). Beyträge zur Hydraulischen Architektur. Dritter Band, Johann Christian Dietrich, Göttingen.Google Scholar
  72. Zienkiewicz, O. C., and Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24: 337–357.MathSciNetCrossRefMATHGoogle Scholar
  73. Zienkiewicz, O. C., and Zhu, J. Z. (1992). The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33: 1331–1364.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Wolfgang Ehlers
    • 1
  • Peter Ellsiepen
    • 1
  1. 1.Institute of Applied MechanicsUniversity of StuttgartGermany

Personalised recommendations