Skip to main content

Turbulent Compressible Flow Computations

Numerical Aspects of Rans Solution and Applications

  • Conference paper
Book cover Advanced Turbulent Flow Computations

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 395))

  • 405 Accesses

Abstract

This paper presents an overview of the numerical methods used for the solution of the compressible Reynolds Averaged Navier-Stokes equations. The equations are presented in different formulations adapted to various practical applications corresponding to rotating and non-rotating flows. A summary of the mathematical properties of the equations and of the main numerical schemes used among the CFD community is presented. Because, in this paper, we are concerned by methods used for industrial applications, a short overview concerning meshes for turbomachinery applications, and extension of numerical schemes in multiple dimension problems is performed. Some turbulence models, limited at most to two-equation transport equations based on eddy viscosity concept are also presented. Finally, the results of 3D internal and external numerical simulations of turbulent flows are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirsch, Ch.: Numerical Computation of Internal and External Flows, Vol. 1 Fundamentals of Numerical Discretization, J. Wiley Sons, Chichester, 1988.

    Google Scholar 

  2. Hirsch, Ch.: Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows, J. Wiley Sons, Chichester, 1990.

    Google Scholar 

  3. Peyret, R. and Taylor, T.D.: Computational Methods for Fluid Flow, Springer Verlag, 1983.

    Google Scholar 

  4. Veuillot, J.P. and Cambier, L.: Computation Techniques for the Simulation of Turbomachinery Compressible Flows, Lecture Notes in Physics, Vol. 371, pp. 51–62, K.W. Morton Ed., Springer-Verlag, 1990.

    Google Scholar 

  5. Lax P.D., Wendroff B.: Difference Schemes for Hyperbolic Equations with High Order of Accuracy, Comm. on Pure and Applied Mathematics, Vol. 17, pp. 381–398, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  6. MacCormack R.W.: The effect of Viscosity in Hypervelocity Impact Cratering,AIAA Paper 69–354, 1969.

    Google Scholar 

  7. Jameson A., Schmidt W, Turkel E. Numerical Simulation of the Euler Equations by Finite Volume Method Using Runge-Kutta Time Stepping Schemes, AIAA Paper 811259, 1981.

    Google Scholar 

  8. Lerat A.: Une classe de schémas aux différences pour les systèmes hyperboliques de lois de conservation,Comptes rendus Acad. Sciences, Paris, Vol. A288, pp. 1033–1036, 1979.

    Google Scholar 

  9. Stegger J.L., Warming R.F.: Flux Vector Splitting of the Inviscid Gas-Dynamic Equations with Applications to Finite Difference Methods, Jour. of Computational Physics, Vol. 40, pp. 263–293, 1981.

    Article  ADS  Google Scholar 

  10. Van Leer B.: Flux Vector Splitting for the Euler Equations,Proc. 8th Conf. on Numerical Methods in Fluid Dynamics; Lecture Notes in Physics, Vol. 170, pp. 507512, Springer Verlag, 1982.

    Google Scholar 

  11. Roe P.L.: Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,Jour. of Computational Physics, Vo. 43, pp. 357–372, 1981.

    Google Scholar 

  12. Osher S: Shock Modelling in Aeronautics,In Numerical Methods for Fluid Dynamics, Ed. by K.W. Morton and M.J. Baines, Academic Press, London, pp. 179–218, 1982.

    Google Scholar 

  13. Harten A.: High Resolution Schemes for Hyperbolic Conservation Laws,Jour. of Computational Physics, Vol. 49, pp. 357–393, 1983.

    Google Scholar 

  14. Yee H.C.: Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications,Jour. of Computational Physics, Vol. 68, pp. 151–179, 1987.

    Google Scholar 

  15. AGARD Advisory Report 355: CFD Validation for Propulsion System Components,edited by J. Dunham, 1998.

    Google Scholar 

  16. Veuillot J.P., Meauzé G.: A 3D Euler Method for Internal Transonic Flow Computations with a Multi-Domain Approach, AGARD-LS-140, 1985.

    Google Scholar 

  17. Amone A., Liou M., Povinelli L.: Multigrid Calculations of Three-Dimensional Viscous Cascade Flows, Jour. of Propulsion and Power, Vol. 9 pp. 605–614, 1993.

    Article  Google Scholar 

  18. Heider R., Duboue J.M., Petot B., Couaillier V., Liamis N., Billonnet G.: Three-Dimensional Analysis of Turbine Rotor Flow Including Tip Clearance, ASME Paper 93-GT-111, 1993.

    Google Scholar 

  19. Choi D.: A Navier-Stokes Analysis of Film Cooling in a Turbine Blade, AIAA Paper 93–0158, 1993.

    Google Scholar 

  20. Fougères J.M., Heider R.: Three-Dimensional Navier-Stokes Prediction of heat Transfer with Film Cooling, ASME Paper 94-GT-14., 1994

    Google Scholar 

  21. Madavan N.K., Rai M.M., Gavali S.: Multipassage Three-Dimensional Navier-Stokes Simulation of Turbine Rotor-Stator Interaction, Jour. of Propulsion and Power, No 3, pp. 389–396, 1993.

    Google Scholar 

  22. Bassi F., Rebay S. Savini M.: Transonic and Supersonic Inviscid Computations in Cascades Using Adaptative Unstructured Meshes, ASME Paper 91-GT-312, 1991.

    Google Scholar 

  23. Trépanier J.Y., Paraschivoiu M., Reggio M.: Euler Computations of Rotor-Stator Interaction in Turbomachinery Cascades Using Adaptative Triangular Meshes, AIAA Paper 93–0386, 1993.

    Google Scholar 

  24. Kwon O.J., Hah C. (1993): Three-Dimensional Unstructured Grid Euler Method Applied to Turbine Blades, AIAA Paper 93–0196, 1993.

    Google Scholar 

  25. Dawes W.N.: The Simulation of Three-Dimensional Viscous Flow in Turbomachinery Geometries Using a Solution-Adaptative Unstructured Mesh Methodology,Jour. of Turbomachinery, Vol. 114, pp. 528–537, 1992.

    Google Scholar 

  26. Dawes, W.N.: The Extension of a Solution-Adaptative Three-Dimensional NavierStokes Solver Toward Geometries of Arbitrary Complexity, Jour. of Turbomachinery, Vol. 115, pp. 283–295, 1993.

    Article  Google Scholar 

  27. Nakahashi K., Nozaki O.,Kikuchi K., Tamura A. Navier-Stokes Computations of Two-and Three-Dimensional Cascade Flow Fields, AIAA Paper 87–1315, 1987.

    Google Scholar 

  28. Mathur S.R., Madavan R.N., Rajagopalan R.G.: A Hybrid Structured-Unstructured Method for Unsteady Turbomachinery Flow Computations, AIAA Paper 93–0387, 1993.

    Google Scholar 

  29. Holmes D.G., Lamson S.H., Connell: Quasi-3D Solutions for Transonic, Inviscid Flows by Adaptative Triangulation, ASME Paper 88-GT-83, 1998.

    Google Scholar 

  30. Ivanov M.J., Kostege V.K., Krupa V.G., Nigmatullin R.Z.: Design of High-Load Aviation Turbomachines Using modern 3D Computational Methods, Proc. of the XIth ISABE Symposium, F.S. Billig Ed., AIAA Washington D.C., 1993.

    Google Scholar 

  31. Ni R.H.: A Multiple Grid Scheme for Solving the Euler Equations, AIAA Journal, Vol. 20, pp. 1565–1571, 1982.

    Article  ADS  MATH  Google Scholar 

  32. Davis R.L., Ni R.H., Carter J.E.: Cascade Viscous Flow Analysis Using the NavierStokes Equations, Jour. of Propulsion, Vol. 3, pp. 406–414, 1987.

    Article  ADS  Google Scholar 

  33. Giles M.B.: Stator/Rotor Interaction in a Transonic turbine,AIAA Paper 88–3093, 1988.

    Google Scholar 

  34. Cambier L., Couaillier V., Veuillot J.P.: Numerical Solution of the Navier-Stokes Equations by a Multigrid Method, La Recherche Aérospatiale, n° 1998–2, pp. 23–42 (see also English Edition), 1988.

    Google Scholar 

  35. Chima R.V.: Viscous Three-Dimensional Calculations of Transonic Fan Performance,AGARD CP 510, Paper 21, 1991.

    Google Scholar 

  36. Kroll, N. MEGAFLOW - A Numerical Flow Simulation System, Proceedings of the ICAS Conference, Melbourne, 1998.

    Google Scholar 

  37. Calvert W.J., Stapleton A.W., Emmerson P.R., Buchanam C.R, Nott C.M.: Evaluation of a 3D Viscous Code for Turbomachinery, ASME Paper 97-GT-78, 1997.

    Google Scholar 

  38. Vuillot A.M., Couaillier V., Liamis N.: 3D Turbomachinery Euler and Navier-Stokes Calculations with Multidomain Cell-Centered Approach, AIAA Paper 93–2576, 1993.

    Google Scholar 

  39. Beam R.M., Warming R.F.: An Implicit Factored Scheme for the Compressible Navier-Stokes equations, AIAA Journal, Vol. 16, pp. 393–402, 1978.

    Article  ADS  MATH  Google Scholar 

  40. Lerat A., Sidès J., Daru V.: An Implicit Finite-Volume method for Solving the Euler Equations, Lecture Notes in Physics, Vol. 170, pp. 343–349, 1982.

    Article  ADS  Google Scholar 

  41. Liamis N., Couaillier V.: Unsteady Euler and Navier-Stokes Flow Simultations with an Implicit Runge-Kutta Method, Proc. 2nd European Comput. Fluid Dynamics Conf., Stuttgart, John Wiley Sons, pp. 917–924, 1994.

    Google Scholar 

  42. Jameson A.: Multigrid Algorithms for Compressible Flow Calculations,Lecture Notes in Mathematics, Proc. of the 2nd European Conf. on Multigrid Methods, Cologne, Vol. 1228, pp. 166–201, 1985.

    Google Scholar 

  43. Chima R.V., Giel P.W., Boyle R.J.: An Algebraic Turbulence Model for Three-Dimensional Viscous Flows, NASA TM 105931, 1993.

    Google Scholar 

  44. Radespiel R., Kroll N.: Multigrid Schemes with Semicoarsening for Accurate Computations of Hypersonic Viscous Flows, 1B 129–90/19, DLR, 1991.

    Google Scholar 

  45. Swanson R.C. Turkel E.: Multistage Schemes With Mulrigrid for Euler and NavierStokes Equations, NASA-TM 3631, 1994.

    Google Scholar 

  46. Couaillier, V.: Numerical Solution of Separated Turbulent Flows Based on the Solution of RANS/Low Reynolds Two-Equation Models, AIAA Paper 99–0154, 1999.

    Google Scholar 

  47. Baldwin B., Lomax H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow, AIAA Paper 78–0257, 1978.

    Google Scholar 

  48. Cebeci T., Smith A.M.O.: Analysis of Turbulent Boundary Layers, Academic Press, New York, 1974.

    MATH  Google Scholar 

  49. Michel R., Quémard C., Durant R.: Application d’un schéma longueur de mélange à l’étude de couches limites turbulentes d’équilibre, ONERA NT No 154, 1969.

    Google Scholar 

  50. Jones W.P., Launder B.E.: The Calculation of Low-Reynolds-Number Phenomena with a Two-Equation Model of Turbulence, J. of Heat and Mass Transfer, Vol 16, pp. 11191130, 1973.

    Google Scholar 

  51. Wilcox D.C., Rubesin M.W.: Progress in Turbulence Modeling for Complex Flow Fields Including Effects of Compressibility, NASA Technical Paper 1517, 1980.

    Google Scholar 

  52. Coakley T.J.,: Turbulence Modeling Methods for the Compressible Navier-Stokes Equations,AIAA Paper 83–1693, 1983.

    Google Scholar 

  53. Patel V.C., Rodi W., Scheuerer G.: Turbulence Models for Near-Wall and Low Reynolds Number Flows: a Review, AIAA Jour., Vol. 23, pp. 1308–1319, 1984.

    Article  ADS  MathSciNet  Google Scholar 

  54. Granville P.S.: Baldwin-Lomax Factors for Turbulent Boundary Layers in Pressure Gradients,AIAA Journal, Vol. 25, pp. 1624–1627, 1987.

    Google Scholar 

  55. York B., Knight D.: Calculation of Two-Dimensional Turbulent Boundary Layers Using the Baldwin-Lomax Model, AIAA Jour., Vol. 23, pp. 1849–1850, 1985.

    Article  ADS  Google Scholar 

  56. Haase W. et al. Eds: EUROVAL-A European Initiative on Validation of CFD Codes, Notes on Numerical Fluid Dynamics, Vol. 42, Vieweg Verlag, 1993.

    Google Scholar 

  57. ETMA: Proceedings of the Workshop on Turbulence Modeling for Compressible Flow Arising in Aeronautics, UMIST, Manchester, UK, 1994.

    Google Scholar 

  58. Gleize V. (1994): Multiple Scale Modeling of Turbulent non-Equilibrium Boundary Layer Flows, Phys. of Fluids 8 (10), 1996.

    Google Scholar 

  59. Lien F.S., Leschziner M.A.,: Modelling Shock/Turbulent-Boundary-Layer Interaction with Second-Moment Closure within a Pressure-Velocity Strategy, Lecture Notes in Physics, Vol. 414, M.Napolitano, F. Sabetta Eds, Springer-Verlag, pp. 175–179, 1993.

    Google Scholar 

  60. Cahen J., Couaillier V., Délery J., Pot Th.: Validation of a Navier-Stokes Code Using a k-e Turbulence Model Applied to a Three-Dimensional Transonic Channel, AIAA Paper 93–0293, 1993.

    Google Scholar 

  61. Matsuo Y.: Computations of Three-Dimensional Viscous Flows Flows in Turbomachinery cascades,AIAA Paper 91–2237, 1991.

    Google Scholar 

  62. Schmitt V., Charpin F.: Pressure distributions on the ONERA-M6 Wing at transonic Mach Numbers, AGARD-AR-138, 1979.

    Google Scholar 

  63. Moore R.D., Reid L. Performance of a Single-Stage Axial Flow Transonic Compressor with Rotor and stator Aspect ratios of 1.19 and 1.26, Respectively, and with Design Pressure Ratio of 2.05, NASA TP 1659, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Couaillier, V. (2000). Turbulent Compressible Flow Computations. In: Peyret, R., Krause, E. (eds) Advanced Turbulent Flow Computations. International Centre for Mechanical Sciences, vol 395. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2590-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2590-8_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83324-7

  • Online ISBN: 978-3-7091-2590-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics