Advertisement

Turbulent Compressible Flow Computations

Numerical Aspects of Rans Solution and Applications
  • V. Couaillier
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 395)

Abstract

This paper presents an overview of the numerical methods used for the solution of the compressible Reynolds Averaged Navier-Stokes equations. The equations are presented in different formulations adapted to various practical applications corresponding to rotating and non-rotating flows. A summary of the mathematical properties of the equations and of the main numerical schemes used among the CFD community is presented. Because, in this paper, we are concerned by methods used for industrial applications, a short overview concerning meshes for turbomachinery applications, and extension of numerical schemes in multiple dimension problems is performed. Some turbulence models, limited at most to two-equation transport equations based on eddy viscosity concept are also presented. Finally, the results of 3D internal and external numerical simulations of turbulent flows are discussed.

Keywords

Computational Fluid Dynamics Turbulence Model AIAA Paper Film Cool Algebraic Turbulence Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirsch, Ch.: Numerical Computation of Internal and External Flows, Vol. 1 Fundamentals of Numerical Discretization, J. Wiley Sons, Chichester, 1988.Google Scholar
  2. 2.
    Hirsch, Ch.: Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows, J. Wiley Sons, Chichester, 1990.Google Scholar
  3. 3.
    Peyret, R. and Taylor, T.D.: Computational Methods for Fluid Flow, Springer Verlag, 1983.Google Scholar
  4. 4.
    Veuillot, J.P. and Cambier, L.: Computation Techniques for the Simulation of Turbomachinery Compressible Flows, Lecture Notes in Physics, Vol. 371, pp. 51–62, K.W. Morton Ed., Springer-Verlag, 1990.Google Scholar
  5. 5.
    Lax P.D., Wendroff B.: Difference Schemes for Hyperbolic Equations with High Order of Accuracy, Comm. on Pure and Applied Mathematics, Vol. 17, pp. 381–398, 1964.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    MacCormack R.W.: The effect of Viscosity in Hypervelocity Impact Cratering,AIAA Paper 69–354, 1969.Google Scholar
  7. 7.
    Jameson A., Schmidt W, Turkel E. Numerical Simulation of the Euler Equations by Finite Volume Method Using Runge-Kutta Time Stepping Schemes, AIAA Paper 811259, 1981.Google Scholar
  8. 8.
    Lerat A.: Une classe de schémas aux différences pour les systèmes hyperboliques de lois de conservation,Comptes rendus Acad. Sciences, Paris, Vol. A288, pp. 1033–1036, 1979.Google Scholar
  9. 9.
    Stegger J.L., Warming R.F.: Flux Vector Splitting of the Inviscid Gas-Dynamic Equations with Applications to Finite Difference Methods, Jour. of Computational Physics, Vol. 40, pp. 263–293, 1981.ADSCrossRefGoogle Scholar
  10. 10.
    Van Leer B.: Flux Vector Splitting for the Euler Equations,Proc. 8th Conf. on Numerical Methods in Fluid Dynamics; Lecture Notes in Physics, Vol. 170, pp. 507512, Springer Verlag, 1982.Google Scholar
  11. 11.
    Roe P.L.: Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,Jour. of Computational Physics, Vo. 43, pp. 357–372, 1981.Google Scholar
  12. 12.
    Osher S: Shock Modelling in Aeronautics,In Numerical Methods for Fluid Dynamics, Ed. by K.W. Morton and M.J. Baines, Academic Press, London, pp. 179–218, 1982.Google Scholar
  13. 13.
    Harten A.: High Resolution Schemes for Hyperbolic Conservation Laws,Jour. of Computational Physics, Vol. 49, pp. 357–393, 1983.Google Scholar
  14. 14.
    Yee H.C.: Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications,Jour. of Computational Physics, Vol. 68, pp. 151–179, 1987.Google Scholar
  15. 15.
    AGARD Advisory Report 355: CFD Validation for Propulsion System Components,edited by J. Dunham, 1998.Google Scholar
  16. 16.
    Veuillot J.P., Meauzé G.: A 3D Euler Method for Internal Transonic Flow Computations with a Multi-Domain Approach, AGARD-LS-140, 1985.Google Scholar
  17. 17.
    Amone A., Liou M., Povinelli L.: Multigrid Calculations of Three-Dimensional Viscous Cascade Flows, Jour. of Propulsion and Power, Vol. 9 pp. 605–614, 1993.CrossRefGoogle Scholar
  18. 18.
    Heider R., Duboue J.M., Petot B., Couaillier V., Liamis N., Billonnet G.: Three-Dimensional Analysis of Turbine Rotor Flow Including Tip Clearance, ASME Paper 93-GT-111, 1993.Google Scholar
  19. 19.
    Choi D.: A Navier-Stokes Analysis of Film Cooling in a Turbine Blade, AIAA Paper 93–0158, 1993.Google Scholar
  20. 20.
    Fougères J.M., Heider R.: Three-Dimensional Navier-Stokes Prediction of heat Transfer with Film Cooling, ASME Paper 94-GT-14., 1994Google Scholar
  21. 21.
    Madavan N.K., Rai M.M., Gavali S.: Multipassage Three-Dimensional Navier-Stokes Simulation of Turbine Rotor-Stator Interaction, Jour. of Propulsion and Power, No 3, pp. 389–396, 1993.Google Scholar
  22. 22.
    Bassi F., Rebay S. Savini M.: Transonic and Supersonic Inviscid Computations in Cascades Using Adaptative Unstructured Meshes, ASME Paper 91-GT-312, 1991.Google Scholar
  23. 23.
    Trépanier J.Y., Paraschivoiu M., Reggio M.: Euler Computations of Rotor-Stator Interaction in Turbomachinery Cascades Using Adaptative Triangular Meshes, AIAA Paper 93–0386, 1993.Google Scholar
  24. 24.
    Kwon O.J., Hah C. (1993): Three-Dimensional Unstructured Grid Euler Method Applied to Turbine Blades, AIAA Paper 93–0196, 1993.Google Scholar
  25. 25.
    Dawes W.N.: The Simulation of Three-Dimensional Viscous Flow in Turbomachinery Geometries Using a Solution-Adaptative Unstructured Mesh Methodology,Jour. of Turbomachinery, Vol. 114, pp. 528–537, 1992.Google Scholar
  26. 26.
    Dawes, W.N.: The Extension of a Solution-Adaptative Three-Dimensional NavierStokes Solver Toward Geometries of Arbitrary Complexity, Jour. of Turbomachinery, Vol. 115, pp. 283–295, 1993.CrossRefGoogle Scholar
  27. 27.
    Nakahashi K., Nozaki O.,Kikuchi K., Tamura A. Navier-Stokes Computations of Two-and Three-Dimensional Cascade Flow Fields, AIAA Paper 87–1315, 1987.Google Scholar
  28. 28.
    Mathur S.R., Madavan R.N., Rajagopalan R.G.: A Hybrid Structured-Unstructured Method for Unsteady Turbomachinery Flow Computations, AIAA Paper 93–0387, 1993.Google Scholar
  29. 29.
    Holmes D.G., Lamson S.H., Connell: Quasi-3D Solutions for Transonic, Inviscid Flows by Adaptative Triangulation, ASME Paper 88-GT-83, 1998.Google Scholar
  30. 30.
    Ivanov M.J., Kostege V.K., Krupa V.G., Nigmatullin R.Z.: Design of High-Load Aviation Turbomachines Using modern 3D Computational Methods, Proc. of the XIth ISABE Symposium, F.S. Billig Ed., AIAA Washington D.C., 1993.Google Scholar
  31. 31.
    Ni R.H.: A Multiple Grid Scheme for Solving the Euler Equations, AIAA Journal, Vol. 20, pp. 1565–1571, 1982.ADSCrossRefMATHGoogle Scholar
  32. 32.
    Davis R.L., Ni R.H., Carter J.E.: Cascade Viscous Flow Analysis Using the NavierStokes Equations, Jour. of Propulsion, Vol. 3, pp. 406–414, 1987.ADSCrossRefGoogle Scholar
  33. 33.
    Giles M.B.: Stator/Rotor Interaction in a Transonic turbine,AIAA Paper 88–3093, 1988.Google Scholar
  34. 34.
    Cambier L., Couaillier V., Veuillot J.P.: Numerical Solution of the Navier-Stokes Equations by a Multigrid Method, La Recherche Aérospatiale, n° 1998–2, pp. 23–42 (see also English Edition), 1988.Google Scholar
  35. 35.
    Chima R.V.: Viscous Three-Dimensional Calculations of Transonic Fan Performance,AGARD CP 510, Paper 21, 1991.Google Scholar
  36. 36.
    Kroll, N. MEGAFLOW - A Numerical Flow Simulation System, Proceedings of the ICAS Conference, Melbourne, 1998.Google Scholar
  37. 37.
    Calvert W.J., Stapleton A.W., Emmerson P.R., Buchanam C.R, Nott C.M.: Evaluation of a 3D Viscous Code for Turbomachinery, ASME Paper 97-GT-78, 1997.Google Scholar
  38. 38.
    Vuillot A.M., Couaillier V., Liamis N.: 3D Turbomachinery Euler and Navier-Stokes Calculations with Multidomain Cell-Centered Approach, AIAA Paper 93–2576, 1993.Google Scholar
  39. 39.
    Beam R.M., Warming R.F.: An Implicit Factored Scheme for the Compressible Navier-Stokes equations, AIAA Journal, Vol. 16, pp. 393–402, 1978.ADSCrossRefMATHGoogle Scholar
  40. 40.
    Lerat A., Sidès J., Daru V.: An Implicit Finite-Volume method for Solving the Euler Equations, Lecture Notes in Physics, Vol. 170, pp. 343–349, 1982.ADSCrossRefGoogle Scholar
  41. 41.
    Liamis N., Couaillier V.: Unsteady Euler and Navier-Stokes Flow Simultations with an Implicit Runge-Kutta Method, Proc. 2nd European Comput. Fluid Dynamics Conf., Stuttgart, John Wiley Sons, pp. 917–924, 1994.Google Scholar
  42. 42.
    Jameson A.: Multigrid Algorithms for Compressible Flow Calculations,Lecture Notes in Mathematics, Proc. of the 2nd European Conf. on Multigrid Methods, Cologne, Vol. 1228, pp. 166–201, 1985.Google Scholar
  43. 43.
    Chima R.V., Giel P.W., Boyle R.J.: An Algebraic Turbulence Model for Three-Dimensional Viscous Flows, NASA TM 105931, 1993.Google Scholar
  44. 44.
    Radespiel R., Kroll N.: Multigrid Schemes with Semicoarsening for Accurate Computations of Hypersonic Viscous Flows, 1B 129–90/19, DLR, 1991.Google Scholar
  45. 45.
    Swanson R.C. Turkel E.: Multistage Schemes With Mulrigrid for Euler and NavierStokes Equations, NASA-TM 3631, 1994.Google Scholar
  46. 46.
    Couaillier, V.: Numerical Solution of Separated Turbulent Flows Based on the Solution of RANS/Low Reynolds Two-Equation Models, AIAA Paper 99–0154, 1999.Google Scholar
  47. 47.
    Baldwin B., Lomax H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow, AIAA Paper 78–0257, 1978.Google Scholar
  48. 48.
    Cebeci T., Smith A.M.O.: Analysis of Turbulent Boundary Layers, Academic Press, New York, 1974.MATHGoogle Scholar
  49. 49.
    Michel R., Quémard C., Durant R.: Application d’un schéma longueur de mélange à l’étude de couches limites turbulentes d’équilibre, ONERA NT No 154, 1969.Google Scholar
  50. 50.
    Jones W.P., Launder B.E.: The Calculation of Low-Reynolds-Number Phenomena with a Two-Equation Model of Turbulence, J. of Heat and Mass Transfer, Vol 16, pp. 11191130, 1973.Google Scholar
  51. 51.
    Wilcox D.C., Rubesin M.W.: Progress in Turbulence Modeling for Complex Flow Fields Including Effects of Compressibility, NASA Technical Paper 1517, 1980.Google Scholar
  52. 52.
    Coakley T.J.,: Turbulence Modeling Methods for the Compressible Navier-Stokes Equations,AIAA Paper 83–1693, 1983.Google Scholar
  53. 53.
    Patel V.C., Rodi W., Scheuerer G.: Turbulence Models for Near-Wall and Low Reynolds Number Flows: a Review, AIAA Jour., Vol. 23, pp. 1308–1319, 1984.ADSCrossRefMathSciNetGoogle Scholar
  54. 54.
    Granville P.S.: Baldwin-Lomax Factors for Turbulent Boundary Layers in Pressure Gradients,AIAA Journal, Vol. 25, pp. 1624–1627, 1987.Google Scholar
  55. 55.
    York B., Knight D.: Calculation of Two-Dimensional Turbulent Boundary Layers Using the Baldwin-Lomax Model, AIAA Jour., Vol. 23, pp. 1849–1850, 1985.ADSCrossRefGoogle Scholar
  56. 56.
    Haase W. et al. Eds: EUROVAL-A European Initiative on Validation of CFD Codes, Notes on Numerical Fluid Dynamics, Vol. 42, Vieweg Verlag, 1993.Google Scholar
  57. 57.
    ETMA: Proceedings of the Workshop on Turbulence Modeling for Compressible Flow Arising in Aeronautics, UMIST, Manchester, UK, 1994.Google Scholar
  58. 58.
    Gleize V. (1994): Multiple Scale Modeling of Turbulent non-Equilibrium Boundary Layer Flows, Phys. of Fluids 8 (10), 1996.Google Scholar
  59. 59.
    Lien F.S., Leschziner M.A.,: Modelling Shock/Turbulent-Boundary-Layer Interaction with Second-Moment Closure within a Pressure-Velocity Strategy, Lecture Notes in Physics, Vol. 414, M.Napolitano, F. Sabetta Eds, Springer-Verlag, pp. 175–179, 1993.Google Scholar
  60. 60.
    Cahen J., Couaillier V., Délery J., Pot Th.: Validation of a Navier-Stokes Code Using a k-e Turbulence Model Applied to a Three-Dimensional Transonic Channel, AIAA Paper 93–0293, 1993.Google Scholar
  61. 61.
    Matsuo Y.: Computations of Three-Dimensional Viscous Flows Flows in Turbomachinery cascades,AIAA Paper 91–2237, 1991.Google Scholar
  62. 62.
    Schmitt V., Charpin F.: Pressure distributions on the ONERA-M6 Wing at transonic Mach Numbers, AGARD-AR-138, 1979.Google Scholar
  63. 63.
    Moore R.D., Reid L. Performance of a Single-Stage Axial Flow Transonic Compressor with Rotor and stator Aspect ratios of 1.19 and 1.26, Respectively, and with Design Pressure Ratio of 2.05, NASA TP 1659, 1980.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • V. Couaillier
    • 1
  1. 1.ONERAChâtillonFrance

Personalised recommendations