Advanced Turbulent Flow Computations pp 155-208 | Cite as

# Application of Les to Jets and Internal Turbulent Flows

## Abstract

Two solution methods for compressible flows and their application in Large-Eddy Simulation (LES) of turbulent flows are discussed. After a summary of the basic equations and subgrid scale models, the applied discretization methods, solution schemes and boundary conditions with their implementation on high-performance computers are presented. The two discretization methods for the advective terms used in the simulations are a second-order mixed central-upwind discretization based on a AUSM formulation and a higher-order compact finite difference scheme. First, results of the second-order scheme are shown for the case of a turbulent channel and pipe flow, which are only weakly influenced by subgrid scale models, but are in good agreement with DNS and experimental data. Higher-order compact schemes are then used for both laminar and turbulent flows and the results are compared to those from simulations with the second-order scheme. It is found that for the laminar flow and the LES of plane turbulent jets the higher-order compact scheme is not of principal advantage. This is primarily related to the sensitivity of the compact scheme to stretched and curvilinear grids, which requires explicit filtering steps to avoid unphysical oscillations in the solution. Further results are then presented, which are obtained with the computationally cheaper second-order scheme. The results include turbulent flows in pipe bends with different Reynolds and Dean numbers. The solutions show swirl switching with a distinct low frequency peak. Finally, turbulent flows in non-trivial geometries are considered. This includes a first step towards the LES of the flow in an internal combustion engine with four valves and a realistic geometry.

## Keywords

Direct Numerical Simulation Strouhal Number Turbulent Channel Flow Smagorinsky Model Compact Scheme## Preview

Unable to display preview. Download preview PDF.

## References

- 1.M. A. Leschziner. Modelling strongly swirling flows with advanced turbulence closures. In
*ASME-JSME Fluids Engineering Conference*,*Portland*, 1991.Google Scholar - 2.U. Piomelli. High Reynolds number calculations using the dynamic subgrid-scale stress model.
*Phys. Fluids*, A 5: 1484–1490, 1993.ADSCrossRefGoogle Scholar - 3.M. Lesieur and O. Metais. New trends in large-eddy simulations of turbulence.
*Annual Review of Fluid Mechanics*, 28: 45–82, 1996.ADSCrossRefMathSciNetGoogle Scholar - 4.J. Smagorinsky. General circulation experiments with the primitive equations.
*Mon. Weather Rev.*, 91: 99–164, 1963.ADSCrossRefGoogle Scholar - 5.J. Bardina, J. H. Ferziger, and W. C. Reynolds. Improved subgrid scale models for large eddy simulation. AIAA, Pap. 80–1357, 1980.Google Scholar
- 6.M. Germano, U. Piomelli, P. Moin, and W. Cabot. A dynamic subgrid-scale eddy viscosity model. In
*Proc. of the Summer Program*. Center Turb. Res., 1990.Google Scholar - 7.S. Ghosal, Th. S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model for large-eddy simulation of turbulent flows.
*J. Fluid Mech.*, 286: 229–255, 1995.ADSCrossRefMATHMathSciNetGoogle Scholar - 8.U. Piomelli and J. Liu. Large-eddy simulation of rotating channel flows using a localized dynamic model.
*Phys. Fluids*, 7: 839–848, 1995.ADSCrossRefMATHGoogle Scholar - 9.M. Breuer. Large-eddy simulations of the flow past bluff bodies: Numerical and modelling aspects. In B. Geurts and H. Kuerten, editors,
*DNS and LES of Complex Flows Numerical and Modelling Aspects*. Universiteit Twente, 1997. ISSN 0169–2690.Google Scholar - 10.B. Vreman, B. Geurts, and H. Kuerten. Comparison of numerical schemes in large-eddy simulation of the temporal mixing layer.
*Int. J. Num. Meth. Fluids*, 22: 297–311, 1996.CrossRefMATHGoogle Scholar - 11.S. Ghosal. Analysis of discretization errors in LES. In
*Ann. Res. Briefs*, pp. 3–24. Center Turb. Res., 1995.Google Scholar - 12.H. Tennekes and J. L. Lumley. A
*First Course in Turbulence*. The MIT Press, Cambridge, Massachusetts and London, 1972.Google Scholar - 13.P. D. Thomas and C. K. Lombard. Geometric conservation law and its application to flow computations on moving grids.
*AIAA J.*, 17: 1030–1037, 1979.ADSCrossRefMATHMathSciNetGoogle Scholar - 14.M. Rosenfeld and D. Kwak. Time-dependent solutions of viscous incompressible flows in moving coordinates.
*Int. J. Num. Meth. Fluids*, 13: 1311–1328, 1991.CrossRefMATHGoogle Scholar - 15.G. Erlebacher and S. Sarkar. Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence.
*ICASE Rep.*,92–18, 1992. NASA CR 189640.Google Scholar - 16.U. Piomelli, P. Moin, and J. Ferziger. Model consistency in LES of turbulent channel flows.
*Phys. Fluids*, 31: 1884–1891, 1988.ADSCrossRefGoogle Scholar - 17.C. E. Leith. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer.
*Phys. Fluids*, A 2: 297–299, 1990.ADSCrossRefGoogle Scholar - 18.P. J. Mason and D. J.Thomson. Stochastic backscatter in large-eddy simulations of boundary layers.
*J. Fluid Mech.*, 242: 51–78, 1992.Google Scholar - 19.D. K. Lilly. A proposed modification of the Germano subgrid-scale closure method.
*Phys. Fluids*, A 4: 633–635, 1992.ADSCrossRefGoogle Scholar - 20.K. Akselvoll and P. Moin. Large eddy simulation of a backward facing step flow. In Rodi et. al., editor,
*Eng. Turbulence Modelling f.4 Experiments**2*, pp. 303–323. Elsevier Science Publishers B.V., 1993.Google Scholar - 21.M. Breuer and W. Rodi. Large-eddy simulation of turbulent flow through a straight square duct and a 180° bend. In
*The first ERCOFTAC Workshop on Direct and LE-Simulation*. ERCOFTAC, Kluwer Academic Publishers, 1994.Google Scholar - 22.A. Yoshizawa. Subgrid-scale modeling of compressible turbulent flows.
*Phys. Fluids*, A 3: 714–716, 1991.ADSCrossRefGoogle Scholar - 23.K. Horiuti. A proper velocity scale for modeling subgrid-scale eddy viscosities in large eddy simulation.
*Phys. Fluids*, A 5: 146–157, 1993.ADSCrossRefMATHGoogle Scholar - 24.P. Morn, K. Squires, W. Cabot, and S. Lee. A dynamic subgrid-scale model for compressible turbulence and scalar transport.
*Phys. Fluids*, A 3: 2746–2757, 1991.ADSCrossRefGoogle Scholar - 25.Ph. R. Spalart. Direct simulation of a turbulent boundary layer up to
*Re =*1410.*J. Fluid Mech.*, 187: 61–98, 1988.Google Scholar - 26.K. Richter, R. Friedrich, and L. Schmitt. LES of turbulent wall boundary layers with pressure gradient. In
*Symposium on Turbulent Shear Flows*, 1987.Google Scholar - 27.W. C. Reynolds. The potential and limitation of direct and large eddy simulations. In Araki, editor,
*Whither Turbulence? Turbulence at the Crossroads*, pp. 313–343. Lecture Notes in Physics, Springer Verlag, Mar. 22–24 1989. Presented at the Whither Turbulence Workshop, Cornell University.Google Scholar - 28.K. W. Thompson. Time dependent boundary conditions for hyperbolic systems.
*J. Comput. Phys.*, 68: 1–24, 1987.ADSCrossRefMATHMathSciNetGoogle Scholar - 29.T. J. Poinsot and S. K. Lele. Boundary conditions for direct simulations of compressible viscous flows.
*J. Comput. Phys.*, 101: 104–129, 1992.ADSCrossRefMATHMathSciNetGoogle Scholar - 30.B. Engquist and A. Majda. Absorbing Boundary Conditions for the Numerical simulation of Waves. Math.
*Comput.*, 31: 629–651, July 1977.Google Scholar - 31.F. F. Grinstein. Open Boundary Conditions in the Simulation of subsonic Turbulent Shear Flows.
*J. Comput. Phys.*, 115: 43–55, 1994.ADSCrossRefMATHGoogle Scholar - 32.J. Nordstrom. Accurate solutions of the Navier-Stokes equations despite unknown outflow data.
*J. Comput. Phys.*, 120: 184–205, 1995.ADSCrossRefMathSciNetGoogle Scholar - 33.J. Nordstrom. The use of characteristic boundary conditions for the Navier-Stokes equations.
*Computers e.4 Fluids*, 24: 609–623, 1995.CrossRefMathSciNetGoogle Scholar - 34.T. Collonius, P. Morn, and S. K. Lele. Direct compuation of aerodynamic sound. Dep. of Mechanical Engineering, Stanford University, Naval Research Contract N00014–88-K-0592 and N00014–92-J-1626 TF-65, 1995.Google Scholar
- 35.Y. Zang, R. L. Street, and J. R. Koseff. A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows.
*Phys. Fluids*, A 5: 3186–3196, 1993.ADSCrossRefGoogle Scholar - 36.U. Schumann. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli.
*J. Comput. Phys.*, 18: 376–404, 1975.ADSCrossRefMATHMathSciNetGoogle Scholar - 37.R. S. Rogallo and P. Morn. Numerical simulation of turbulent flows. Annual
*Review of Fluid Mechanics*, 16: 99–137, 1984.ADSCrossRefGoogle Scholar - 38.U. Piomelli, J. Ferziger, P. Morn, and J. Kim. New approximate boundary conditions for large eddy simulations of wall-bounded flows.
*Phys. Fluids*, A 1: 1061–1068, 1989.ADSCrossRefGoogle Scholar - 39.H. Werner and H. Wengle. Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In Schumann et. al., editor,
*8th Symposium*on*Turbulent Shear Flows*. Springer Verlag, 1993.Google Scholar - 40.D. Virk and F. Hussain. Influence of initial conditions on compressible vorticity dynamics.
*Theoret. Comp. Fluid Dyn.*, 5: 309–334, 1993.CrossRefMATHGoogle Scholar - 41.M. Meinke and D. Hänel. Simulation of unsteady flows. In K. W. Morton, editor,
*Lecture Notes in Physiscs*,*12th ICNMFD*, pp. 268–272. Springer Verlag, 1990.Google Scholar - 42.M. S. Liou and Ch. J. Steffen Jr. A new flux splitting scheme.
*J. Comput. Phys.*, 107: 23–39, 1993.Google Scholar - 43.L. Lapidus and J. H. Seinfeld.
*Numerical Solution of Ordinary Differential Equations*. Academic Press, 1971.Google Scholar - 44.S. K. Lele. Compact finite difference schemes with spectral-like resolution.
*J. Comput. Phys.*, 103: 16–42, 1992.ADSCrossRefMATHMathSciNetGoogle Scholar - 45.N. A. Adams. Vergleich von Padé-und Tschebyscheff-Approximation als diskrete Ableitungsoperatoren. Institut für Theoretische Strömungstechnik, DLR Göttingen, Technical Report IB 221–91 A 16, 1991.Google Scholar
- 46.M. Yanwen and F. Dexun. Super compact finite difference method (SCFDM) with arbitrarily high accuracy.
*Comput. Fluid Dynamics J.*, 5: 259–276, July 1996.Google Scholar - 47.R. Vichnevetsky and J. B. Bowles.
*Fourier Analysis of*Numerical*Approximations of Hyperbolic Equations*. SIAM, 1982.Google Scholar - 48.J. W. Kim and D. J. Lee. Numerical simulation of nonlinear waves using optimized high-order compact schemes.
*Comput. Fluid*Dynamics*J.*, 5: 281–302, October 1996.Google Scholar - 49.A. Jameson. Solution of the Euler equations for two-dimensional transonic flow by a multigrid method.
*Applied Math. and*Comp., 13: 327–355, 1983.MATHMathSciNetGoogle Scholar - 50.C. A. Friehe. Vortex shedding from cylinders at low Reynolds numbers.
*J. Fluid Mech.*, 100: 237–241, 1980.ADSCrossRefGoogle Scholar - 51.J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number.
*J. Fluid Mech.*, 177: 133–166, 1987.ADSCrossRefMATHGoogle Scholar - 52.P. Moin and J. Kim. Numerical investigation of turbulent channel flow.
*J. Fluid Mech.*, 118: 341–377, 1982.ADSCrossRefMATHGoogle Scholar - 53.F. Unger.
*Numerische Simulation turbulenter Rohrströmungen*. Diss., Lehrstuhl für Fluidmechanik, Technische Universität München, 1994.Google Scholar - 54.H. Eckelmann. The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow.
*J. Fluid Mech.*, 65: 439–460, 1974.ADSCrossRefGoogle Scholar - 55.A. K. Hussain and W. C. Reynolds. Measurement in fully developed turbulent channel flow.
*Trans. ASME*, pp. 568–580, 1975.Google Scholar - 56.T. Wei and W. W. Willmarth. Reynolds-number effects on the structure of a turbulent channel flow.
*J. Fluid Mech.*, 204: 57–95, 1989.ADSCrossRefGoogle Scholar - 57.F. Durst, J. Jovanovie, and J. Sender. LDA measurements in the near-wall region of a turbulent pipe flow.
*J. Fluid Mech.*, 295: 305–335, 1995.ADSCrossRefGoogle Scholar - 58.H. Kreplin and H. Eckelmann. Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow.
*Phys. Fluids*, 22: 1233, 1979.ADSCrossRefGoogle Scholar - 59.Y. Wada and M.-S. Lion. A flux splitting scheme with high-resolution and robustness for discontinuities. NASA, TM 106452, 1994. Also an AIAA Pap. 94–0083.Google Scholar
- 60.S. Russ and P. J. Stykowski. Turbulent structure and entrainment in heated jets: The effect of initial conditions.
*Phys. Fluids*, A 5: 3216–3225, 1993.ADSCrossRefGoogle Scholar - 61.C. Schulz.
*Grobstruktursimulation turbulenter Freistrahlen*. Diss., Aerodyn. Inst. RWTH Aachen, 1997.Google Scholar - 62.M. Meinke, C. Schulz, and Th. Rister. LES of Spatially Developing Jets. In R. Friedrich and P. Bontoux, editors,
*Computation and visualization of three-dimensional vortical and turbulent flows. Proceedings of the Fifth CNRS/DFG Workshop on Numerical Flow Simulation*, NNFM 64, pp. 116–131. Vieweg Verlag, 1998.Google Scholar - 63.P. Comte, Y. Dubief, C. Brun, M. Meinke, C. Schulz, and Th. Rister. Simulation of spatially developing plane and round jets. In E. H. Hirschel, editor,
*Numerical Flow Simulation I*,*CNRS-DFG Collaborative Research Programme*,*Results**1996–1998*, NNFM, pp. 301–318. Vieweg Verlag, 1998.Google Scholar - 64.Th. Rister.
*Grobstruktursimulation schwach kompressibler turbulenter Freistrahlen - ein Vergleich zweier Lösungsansätze*. Diss., Aerodyn. Inst. RWTH Aachen, 1998.Google Scholar - 65.H. Schlichting.
*Grenzschicht-Theorie*. Verlag G. Braun, Karlsruhe, 8th edition, 1982.Google Scholar - 66.B. J. Boersma and F. T. M. Nieuwstadt. Large-eddy simulation of turbulent flow in a curved pipe.
*J. Fluids Eng.*, 118: 248–254, 1996.CrossRefGoogle Scholar - 67.J. K. Harvey M. J. Tunstall. On the effect of a sharp bend in a fully developed turbulent pipe flow.
*J. Fluid Mech*, 34: 595–608, 1968.ADSCrossRefGoogle Scholar - 68.Ch. Brücker. A time-recording dpiv-study of the swirl switching effect in a 90° bend flow. In
*8th International Symposium on Flow Visualization*,*Sorento*,*Italy*, Sept. 1–4 1998.Google Scholar - 69.W. Wagner.
*Praktische Strömungstechnik*,*Konus-Handbuch*, volume 2. Technischer Verlag Resch, 1976.Google Scholar - 70.H. Richter.
*Rohrhydraulik*. Springer Verlag, 1971.Google Scholar - 71.H. Ito. Pressure losses in smooth pipe bends.
*J. Basic Eng.*, 82: 131–43, 1960.CrossRefGoogle Scholar - 72.A. Abdelfattah.
*Numerische Simulation von Strömungen in 2- und 4-Ventil Motoren*. Diss., Aerodyn. Inst. RWTH Aachen, 1998.Google Scholar - 73.M. Meinke, J. Hofhaus, and A. Abdelfattah. Vortex ring interaction. In K. Gersten E. Krause, editor,
*IUTAM Symposium on Dynamics of Slender Vortices*,*September**1997*,*Aachen*, Germany, pp. 105–116. Kluwer Academic Publishers, 1997.Google Scholar - 74.Boris, Oran, Grinstein, Brown, Li, Kolbe, and Whaley. Three-dimensional LES with realistic boundary condition performed on a connection machine.
*Lecture Notes in Physics*, 371: 297–302, 1990.Google Scholar - 75.Clark, Ferziger, and Reynolds. Evaluation of subgrid-scale models using an accurately simulated turbulent flow.
*J. Fluid Mech.*, 91: 1–16, 1979.Google Scholar - 76.J. W. Deardorff. A numerical study of three-dmensional turbulent channel flow at large Reynolds numbers.
*J. Fluid Mech.*, 41: 453–480, 1970.ADSCrossRefMATHGoogle Scholar - 77.E. R. van Driest. On turbulent flow near a wall.
*J. Aeronaut. Sci.*, 23: 1007–1011, 1956.CrossRefMATHGoogle Scholar - 78.Th. M. Eidson. Numerical simulation of the turbulent Rayleigh-Benard problem using subgrid modelling.
*J. Fluid Mech.*, 158: 245–268, 1985.Google Scholar - 79.M. Germano. Differential filters of elliptic type.
*Phys. Fluids*, 29: 1757–1758, 1986.ADSCrossRefMATHMathSciNetGoogle Scholar - 80.M. Germano. Differential filters for the large eddy numerical simulation of turbulent flows.
*Phys. Fluids*, 29: 1755–1757, 1986.ADSCrossRefMATHMathSciNetGoogle Scholar - 81.J. O. Hinze.
*Turbulence*. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill Publishing Company, 2nd edition, 1975.Google Scholar - 82.K. Horiuti. The role of the Bardina model in LES of turbulent channel flow.
*Phys. Fluids*, A 1: 426–428, 1989.ADSCrossRefGoogle Scholar - 83.S. K. Lele. Compressibility effects on turbulence.
*Annual Review of Fluid Mechanics*, 26: 211–254, 1994.ADSCrossRefMathSciNetGoogle Scholar - 84.A. Leonard. Energy cascade in large-eddy simulations of turbulent fluid flows.
*Advances in Geophysics*, A 18: 137–148, 1974.Google Scholar - 85.D. C. Leslie and G. L. Quarini. The application of turbulence theory to the formulation of subgrid modelling procedures.
*J. Fluid Mech.*, 91: 65–91, 1979.ADSCrossRefMATHGoogle Scholar - 86.R. K. Madabhushi and S. P. Vanka Large-eddy simulation of turbulence-driven secondary flow in a square duct. Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Technical Report CFD-91–03, 1991.Google Scholar
- 87.N. N. Mansour, P. Moin, W. C. Reynolds, and J. H. Ferziger. Improved methods for large eddy simulation of turbulence. Department of Mechanical Engineering, Stanford University, Technical report, 1977.Google Scholar
- 88.R. Peyret and Th. D. Taylor.
*Computational Methods for Fluid Flow*. Springer Series in Computational Physics. Springer Verlag, 1983.CrossRefMATHGoogle Scholar - 89.U. Piomelli, T. A. Zang, C. G. Speziale, and M. Y. Hussaini. On the large-eddy simulation of transitional wall-bounded flows.
*Phys. Fluids*, A 2: 257–265, 1990.ADSCrossRefGoogle Scholar - 90.U. Piomelli, W. H. Cabot, P. Moin, and S. Lee. Subgrid-scale backscatter in turbulent and transitional flows.
*Phys. Fluids*, A 3: 1766–1771, 1991.ADSCrossRefMATHGoogle Scholar - 91.W. Rodi and N. N. Mansour. Low Reynolds number
*k-e*modelling with the aid of direct simulation data. In*Proceedings of the Summer Program*, pp. 85–106. Center Turb. Res., 1990.Google Scholar - 92.H. Schmidt and U. Schumann. Coherent structure of the convective boundary layer derived fro m large-eddy simulations.
*J. Fluid Mech.*, 200: 511–562, 1988.ADSCrossRefGoogle Scholar - 93.U. Schumann. Direct and large eddy simulation of turbulence. Summary of the state of the art 1987. von Karman Inst. for Fluid Dynamics, Lecture Series 1987–06, May 18–20 1987.Google Scholar
- 94.S. Sarkar, G. Erlebacher, M. Y. Hussaini, and H. O. Kreiss. The analysis and modelling of dilatational terms in compressible turbulence.
*J. Fluid Mech.*, 227: 473–493, 1991.ADSCrossRefMATHGoogle Scholar - 95.S. Sarkar, G. Erlebacher, and M. Y. Hussaini. Compressible homogeneous shear: Simulation and modelling.
*ICASE Rep.*, 92–6, 1992.Google Scholar - 96.Ch. G. Speziale. Galilean invariance of subgrid-scale models in LES of turbulence.
*J. Fluid Mech.*, 156: 55–62, 1985.Google Scholar - 97.L. Stolcis and L. J. Johnston. Compressible flow calculations using a two-equation turbulence model and unstructured grids. In 7th International
*Conference*on Numerical*Methods in Laminar and Turbulent Flow*, pp. 922–932, Stanford, Ca., USA, 1991.Google Scholar - 98.J. Robichaux, D. K. Tafti, and S. P. Vanka. Large eddy simulations of turbulence on CM-2. CFD Laboratory, Dep. of Mech. and Ind. Eng., University of Illinois at Urbana-Champaign Urbana, IL 61801, Technical Report CFD 90–10, 1990.Google Scholar
- 99.A. Yoshizawa. A statistically-derived system of equations for turbulent shear flows.
*Phys. Fluids*, 28: 5963, 1985.Google Scholar - 100.A. Yoshizawa. Statistical theory for compressible turbulent shear flows, with the application to subgrid modelling.
*Phys. Fluids*, 29: 2152–2164, 1986.ADSCrossRefMATHGoogle Scholar - 101.T. A. Zang, R. B. Dahlburg, and J. P. Dahlburg. Direct and large-eddy simulation of 3-dimensional compressible Navier-Stokes-turbulence.
*Phys. Fluids*, A 4: 127–140, 1992.ADSCrossRefMATHGoogle Scholar - 102.Zeman. Dilatational dissipation: The concept and application in modelling compressible mixing layers.
*Phys. Fluids*, A: 178–188, 1990.Google Scholar