Advertisement

Application of Les to Jets and Internal Turbulent Flows

  • M. Meinke
  • E. Krause
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 395)

Abstract

Two solution methods for compressible flows and their application in Large-Eddy Simulation (LES) of turbulent flows are discussed. After a summary of the basic equations and subgrid scale models, the applied discretization methods, solution schemes and boundary conditions with their implementation on high-performance computers are presented. The two discretization methods for the advective terms used in the simulations are a second-order mixed central-upwind discretization based on a AUSM formulation and a higher-order compact finite difference scheme. First, results of the second-order scheme are shown for the case of a turbulent channel and pipe flow, which are only weakly influenced by subgrid scale models, but are in good agreement with DNS and experimental data. Higher-order compact schemes are then used for both laminar and turbulent flows and the results are compared to those from simulations with the second-order scheme. It is found that for the laminar flow and the LES of plane turbulent jets the higher-order compact scheme is not of principal advantage. This is primarily related to the sensitivity of the compact scheme to stretched and curvilinear grids, which requires explicit filtering steps to avoid unphysical oscillations in the solution. Further results are then presented, which are obtained with the computationally cheaper second-order scheme. The results include turbulent flows in pipe bends with different Reynolds and Dean numbers. The solutions show swirl switching with a distinct low frequency peak. Finally, turbulent flows in non-trivial geometries are considered. This includes a first step towards the LES of the flow in an internal combustion engine with four valves and a realistic geometry.

Keywords

Direct Numerical Simulation Strouhal Number Turbulent Channel Flow Smagorinsky Model Compact Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Leschziner. Modelling strongly swirling flows with advanced turbulence closures. In ASME-JSME Fluids Engineering Conference, Portland, 1991.Google Scholar
  2. 2.
    U. Piomelli. High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids, A 5: 1484–1490, 1993.ADSCrossRefGoogle Scholar
  3. 3.
    M. Lesieur and O. Metais. New trends in large-eddy simulations of turbulence. Annual Review of Fluid Mechanics, 28: 45–82, 1996.ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Smagorinsky. General circulation experiments with the primitive equations. Mon. Weather Rev., 91: 99–164, 1963.ADSCrossRefGoogle Scholar
  5. 5.
    J. Bardina, J. H. Ferziger, and W. C. Reynolds. Improved subgrid scale models for large eddy simulation. AIAA, Pap. 80–1357, 1980.Google Scholar
  6. 6.
    M. Germano, U. Piomelli, P. Moin, and W. Cabot. A dynamic subgrid-scale eddy viscosity model. In Proc. of the Summer Program. Center Turb. Res., 1990.Google Scholar
  7. 7.
    S. Ghosal, Th. S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech., 286: 229–255, 1995.ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    U. Piomelli and J. Liu. Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids, 7: 839–848, 1995.ADSCrossRefMATHGoogle Scholar
  9. 9.
    M. Breuer. Large-eddy simulations of the flow past bluff bodies: Numerical and modelling aspects. In B. Geurts and H. Kuerten, editors, DNS and LES of Complex Flows Numerical and Modelling Aspects. Universiteit Twente, 1997. ISSN 0169–2690.Google Scholar
  10. 10.
    B. Vreman, B. Geurts, and H. Kuerten. Comparison of numerical schemes in large-eddy simulation of the temporal mixing layer. Int. J. Num. Meth. Fluids, 22: 297–311, 1996.CrossRefMATHGoogle Scholar
  11. 11.
    S. Ghosal. Analysis of discretization errors in LES. In Ann. Res. Briefs, pp. 3–24. Center Turb. Res., 1995.Google Scholar
  12. 12.
    H. Tennekes and J. L. Lumley. A First Course in Turbulence. The MIT Press, Cambridge, Massachusetts and London, 1972.Google Scholar
  13. 13.
    P. D. Thomas and C. K. Lombard. Geometric conservation law and its application to flow computations on moving grids. AIAA J., 17: 1030–1037, 1979.ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    M. Rosenfeld and D. Kwak. Time-dependent solutions of viscous incompressible flows in moving coordinates. Int. J. Num. Meth. Fluids, 13: 1311–1328, 1991.CrossRefMATHGoogle Scholar
  15. 15.
    G. Erlebacher and S. Sarkar. Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. ICASE Rep.,92–18, 1992. NASA CR 189640.Google Scholar
  16. 16.
    U. Piomelli, P. Moin, and J. Ferziger. Model consistency in LES of turbulent channel flows. Phys. Fluids, 31: 1884–1891, 1988.ADSCrossRefGoogle Scholar
  17. 17.
    C. E. Leith. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer. Phys. Fluids, A 2: 297–299, 1990.ADSCrossRefGoogle Scholar
  18. 18.
    P. J. Mason and D. J.Thomson. Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242: 51–78, 1992.Google Scholar
  19. 19.
    D. K. Lilly. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, A 4: 633–635, 1992.ADSCrossRefGoogle Scholar
  20. 20.
    K. Akselvoll and P. Moin. Large eddy simulation of a backward facing step flow. In Rodi et. al., editor, Eng. Turbulence Modelling f.4 Experiments 2, pp. 303–323. Elsevier Science Publishers B.V., 1993.Google Scholar
  21. 21.
    M. Breuer and W. Rodi. Large-eddy simulation of turbulent flow through a straight square duct and a 180° bend. In The first ERCOFTAC Workshop on Direct and LE-Simulation. ERCOFTAC, Kluwer Academic Publishers, 1994.Google Scholar
  22. 22.
    A. Yoshizawa. Subgrid-scale modeling of compressible turbulent flows. Phys. Fluids, A 3: 714–716, 1991.ADSCrossRefGoogle Scholar
  23. 23.
    K. Horiuti. A proper velocity scale for modeling subgrid-scale eddy viscosities in large eddy simulation. Phys. Fluids, A 5: 146–157, 1993.ADSCrossRefMATHGoogle Scholar
  24. 24.
    P. Morn, K. Squires, W. Cabot, and S. Lee. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids, A 3: 2746–2757, 1991.ADSCrossRefGoogle Scholar
  25. 25.
    Ph. R. Spalart. Direct simulation of a turbulent boundary layer up to Re = 1410. J. Fluid Mech., 187: 61–98, 1988.Google Scholar
  26. 26.
    K. Richter, R. Friedrich, and L. Schmitt. LES of turbulent wall boundary layers with pressure gradient. In Symposium on Turbulent Shear Flows, 1987.Google Scholar
  27. 27.
    W. C. Reynolds. The potential and limitation of direct and large eddy simulations. In Araki, editor, Whither Turbulence? Turbulence at the Crossroads, pp. 313–343. Lecture Notes in Physics, Springer Verlag, Mar. 22–24 1989. Presented at the Whither Turbulence Workshop, Cornell University.Google Scholar
  28. 28.
    K. W. Thompson. Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys., 68: 1–24, 1987.ADSCrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    T. J. Poinsot and S. K. Lele. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101: 104–129, 1992.ADSCrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    B. Engquist and A. Majda. Absorbing Boundary Conditions for the Numerical simulation of Waves. Math. Comput., 31: 629–651, July 1977.Google Scholar
  31. 31.
    F. F. Grinstein. Open Boundary Conditions in the Simulation of subsonic Turbulent Shear Flows. J. Comput. Phys., 115: 43–55, 1994.ADSCrossRefMATHGoogle Scholar
  32. 32.
    J. Nordstrom. Accurate solutions of the Navier-Stokes equations despite unknown outflow data. J. Comput. Phys., 120: 184–205, 1995.ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    J. Nordstrom. The use of characteristic boundary conditions for the Navier-Stokes equations. Computers e.4 Fluids, 24: 609–623, 1995.CrossRefMathSciNetGoogle Scholar
  34. 34.
    T. Collonius, P. Morn, and S. K. Lele. Direct compuation of aerodynamic sound. Dep. of Mechanical Engineering, Stanford University, Naval Research Contract N00014–88-K-0592 and N00014–92-J-1626 TF-65, 1995.Google Scholar
  35. 35.
    Y. Zang, R. L. Street, and J. R. Koseff. A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids, A 5: 3186–3196, 1993.ADSCrossRefGoogle Scholar
  36. 36.
    U. Schumann. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys., 18: 376–404, 1975.ADSCrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    R. S. Rogallo and P. Morn. Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16: 99–137, 1984.ADSCrossRefGoogle Scholar
  38. 38.
    U. Piomelli, J. Ferziger, P. Morn, and J. Kim. New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids, A 1: 1061–1068, 1989.ADSCrossRefGoogle Scholar
  39. 39.
    H. Werner and H. Wengle. Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In Schumann et. al., editor, 8th Symposium on Turbulent Shear Flows. Springer Verlag, 1993.Google Scholar
  40. 40.
    D. Virk and F. Hussain. Influence of initial conditions on compressible vorticity dynamics. Theoret. Comp. Fluid Dyn., 5: 309–334, 1993.CrossRefMATHGoogle Scholar
  41. 41.
    M. Meinke and D. Hänel. Simulation of unsteady flows. In K. W. Morton, editor, Lecture Notes in Physiscs, 12th ICNMFD, pp. 268–272. Springer Verlag, 1990.Google Scholar
  42. 42.
    M. S. Liou and Ch. J. Steffen Jr. A new flux splitting scheme. J. Comput. Phys., 107: 23–39, 1993.Google Scholar
  43. 43.
    L. Lapidus and J. H. Seinfeld. Numerical Solution of Ordinary Differential Equations. Academic Press, 1971.Google Scholar
  44. 44.
    S. K. Lele. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103: 16–42, 1992.ADSCrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    N. A. Adams. Vergleich von Padé-und Tschebyscheff-Approximation als diskrete Ableitungsoperatoren. Institut für Theoretische Strömungstechnik, DLR Göttingen, Technical Report IB 221–91 A 16, 1991.Google Scholar
  46. 46.
    M. Yanwen and F. Dexun. Super compact finite difference method (SCFDM) with arbitrarily high accuracy. Comput. Fluid Dynamics J., 5: 259–276, July 1996.Google Scholar
  47. 47.
    R. Vichnevetsky and J. B. Bowles. Fourier Analysis of Numerical Approximations of Hyperbolic Equations. SIAM, 1982.Google Scholar
  48. 48.
    J. W. Kim and D. J. Lee. Numerical simulation of nonlinear waves using optimized high-order compact schemes. Comput. Fluid Dynamics J., 5: 281–302, October 1996.Google Scholar
  49. 49.
    A. Jameson. Solution of the Euler equations for two-dimensional transonic flow by a multigrid method. Applied Math. and Comp., 13: 327–355, 1983.MATHMathSciNetGoogle Scholar
  50. 50.
    C. A. Friehe. Vortex shedding from cylinders at low Reynolds numbers. J. Fluid Mech., 100: 237–241, 1980.ADSCrossRefGoogle Scholar
  51. 51.
    J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177: 133–166, 1987.ADSCrossRefMATHGoogle Scholar
  52. 52.
    P. Moin and J. Kim. Numerical investigation of turbulent channel flow. J. Fluid Mech., 118: 341–377, 1982.ADSCrossRefMATHGoogle Scholar
  53. 53.
    F. Unger. Numerische Simulation turbulenter Rohrströmungen. Diss., Lehrstuhl für Fluidmechanik, Technische Universität München, 1994.Google Scholar
  54. 54.
    H. Eckelmann. The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech., 65: 439–460, 1974.ADSCrossRefGoogle Scholar
  55. 55.
    A. K. Hussain and W. C. Reynolds. Measurement in fully developed turbulent channel flow. Trans. ASME, pp. 568–580, 1975.Google Scholar
  56. 56.
    T. Wei and W. W. Willmarth. Reynolds-number effects on the structure of a turbulent channel flow. J. Fluid Mech., 204: 57–95, 1989.ADSCrossRefGoogle Scholar
  57. 57.
    F. Durst, J. Jovanovie, and J. Sender. LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech., 295: 305–335, 1995.ADSCrossRefGoogle Scholar
  58. 58.
    H. Kreplin and H. Eckelmann. Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids, 22: 1233, 1979.ADSCrossRefGoogle Scholar
  59. 59.
    Y. Wada and M.-S. Lion. A flux splitting scheme with high-resolution and robustness for discontinuities. NASA, TM 106452, 1994. Also an AIAA Pap. 94–0083.Google Scholar
  60. 60.
    S. Russ and P. J. Stykowski. Turbulent structure and entrainment in heated jets: The effect of initial conditions. Phys. Fluids, A 5: 3216–3225, 1993.ADSCrossRefGoogle Scholar
  61. 61.
    C. Schulz. Grobstruktursimulation turbulenter Freistrahlen. Diss., Aerodyn. Inst. RWTH Aachen, 1997.Google Scholar
  62. 62.
    M. Meinke, C. Schulz, and Th. Rister. LES of Spatially Developing Jets. In R. Friedrich and P. Bontoux, editors, Computation and visualization of three-dimensional vortical and turbulent flows. Proceedings of the Fifth CNRS/DFG Workshop on Numerical Flow Simulation, NNFM 64, pp. 116–131. Vieweg Verlag, 1998.Google Scholar
  63. 63.
    P. Comte, Y. Dubief, C. Brun, M. Meinke, C. Schulz, and Th. Rister. Simulation of spatially developing plane and round jets. In E. H. Hirschel, editor, Numerical Flow Simulation I, CNRS-DFG Collaborative Research Programme, Results 1996–1998, NNFM, pp. 301–318. Vieweg Verlag, 1998.Google Scholar
  64. 64.
    Th. Rister. Grobstruktursimulation schwach kompressibler turbulenter Freistrahlen - ein Vergleich zweier Lösungsansätze. Diss., Aerodyn. Inst. RWTH Aachen, 1998.Google Scholar
  65. 65.
    H. Schlichting. Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe, 8th edition, 1982.Google Scholar
  66. 66.
    B. J. Boersma and F. T. M. Nieuwstadt. Large-eddy simulation of turbulent flow in a curved pipe. J. Fluids Eng., 118: 248–254, 1996.CrossRefGoogle Scholar
  67. 67.
    J. K. Harvey M. J. Tunstall. On the effect of a sharp bend in a fully developed turbulent pipe flow. J. Fluid Mech, 34: 595–608, 1968.ADSCrossRefGoogle Scholar
  68. 68.
    Ch. Brücker. A time-recording dpiv-study of the swirl switching effect in a 90° bend flow. In 8th International Symposium on Flow Visualization, Sorento, Italy, Sept. 1–4 1998.Google Scholar
  69. 69.
    W. Wagner. Praktische Strömungstechnik, Konus-Handbuch, volume 2. Technischer Verlag Resch, 1976.Google Scholar
  70. 70.
    H. Richter. Rohrhydraulik. Springer Verlag, 1971.Google Scholar
  71. 71.
    H. Ito. Pressure losses in smooth pipe bends. J. Basic Eng., 82: 131–43, 1960.CrossRefGoogle Scholar
  72. 72.
    A. Abdelfattah. Numerische Simulation von Strömungen in 2- und 4-Ventil Motoren. Diss., Aerodyn. Inst. RWTH Aachen, 1998.Google Scholar
  73. 73.
    M. Meinke, J. Hofhaus, and A. Abdelfattah. Vortex ring interaction. In K. Gersten E. Krause, editor, IUTAM Symposium on Dynamics of Slender Vortices, September 1997, Aachen, Germany, pp. 105–116. Kluwer Academic Publishers, 1997.Google Scholar
  74. 74.
    Boris, Oran, Grinstein, Brown, Li, Kolbe, and Whaley. Three-dimensional LES with realistic boundary condition performed on a connection machine. Lecture Notes in Physics, 371: 297–302, 1990.Google Scholar
  75. 75.
    Clark, Ferziger, and Reynolds. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech., 91: 1–16, 1979.Google Scholar
  76. 76.
    J. W. Deardorff. A numerical study of three-dmensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41: 453–480, 1970.ADSCrossRefMATHGoogle Scholar
  77. 77.
    E. R. van Driest. On turbulent flow near a wall. J. Aeronaut. Sci., 23: 1007–1011, 1956.CrossRefMATHGoogle Scholar
  78. 78.
    Th. M. Eidson. Numerical simulation of the turbulent Rayleigh-Benard problem using subgrid modelling. J. Fluid Mech., 158: 245–268, 1985.Google Scholar
  79. 79.
    M. Germano. Differential filters of elliptic type. Phys. Fluids, 29: 1757–1758, 1986.ADSCrossRefMATHMathSciNetGoogle Scholar
  80. 80.
    M. Germano. Differential filters for the large eddy numerical simulation of turbulent flows. Phys. Fluids, 29: 1755–1757, 1986.ADSCrossRefMATHMathSciNetGoogle Scholar
  81. 81.
    J. O. Hinze. Turbulence. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill Publishing Company, 2nd edition, 1975.Google Scholar
  82. 82.
    K. Horiuti. The role of the Bardina model in LES of turbulent channel flow. Phys. Fluids, A 1: 426–428, 1989.ADSCrossRefGoogle Scholar
  83. 83.
    S. K. Lele. Compressibility effects on turbulence. Annual Review of Fluid Mechanics, 26: 211–254, 1994.ADSCrossRefMathSciNetGoogle Scholar
  84. 84.
    A. Leonard. Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics, A 18: 137–148, 1974.Google Scholar
  85. 85.
    D. C. Leslie and G. L. Quarini. The application of turbulence theory to the formulation of subgrid modelling procedures. J. Fluid Mech., 91: 65–91, 1979.ADSCrossRefMATHGoogle Scholar
  86. 86.
    R. K. Madabhushi and S. P. Vanka Large-eddy simulation of turbulence-driven secondary flow in a square duct. Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Technical Report CFD-91–03, 1991.Google Scholar
  87. 87.
    N. N. Mansour, P. Moin, W. C. Reynolds, and J. H. Ferziger. Improved methods for large eddy simulation of turbulence. Department of Mechanical Engineering, Stanford University, Technical report, 1977.Google Scholar
  88. 88.
    R. Peyret and Th. D. Taylor. Computational Methods for Fluid Flow. Springer Series in Computational Physics. Springer Verlag, 1983.CrossRefMATHGoogle Scholar
  89. 89.
    U. Piomelli, T. A. Zang, C. G. Speziale, and M. Y. Hussaini. On the large-eddy simulation of transitional wall-bounded flows. Phys. Fluids, A 2: 257–265, 1990.ADSCrossRefGoogle Scholar
  90. 90.
    U. Piomelli, W. H. Cabot, P. Moin, and S. Lee. Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids, A 3: 1766–1771, 1991.ADSCrossRefMATHGoogle Scholar
  91. 91.
    W. Rodi and N. N. Mansour. Low Reynolds number k-e modelling with the aid of direct simulation data. In Proceedings of the Summer Program, pp. 85–106. Center Turb. Res., 1990.Google Scholar
  92. 92.
    H. Schmidt and U. Schumann. Coherent structure of the convective boundary layer derived fro m large-eddy simulations. J. Fluid Mech., 200: 511–562, 1988.ADSCrossRefGoogle Scholar
  93. 93.
    U. Schumann. Direct and large eddy simulation of turbulence. Summary of the state of the art 1987. von Karman Inst. for Fluid Dynamics, Lecture Series 1987–06, May 18–20 1987.Google Scholar
  94. 94.
    S. Sarkar, G. Erlebacher, M. Y. Hussaini, and H. O. Kreiss. The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech., 227: 473–493, 1991.ADSCrossRefMATHGoogle Scholar
  95. 95.
    S. Sarkar, G. Erlebacher, and M. Y. Hussaini. Compressible homogeneous shear: Simulation and modelling. ICASE Rep., 92–6, 1992.Google Scholar
  96. 96.
    Ch. G. Speziale. Galilean invariance of subgrid-scale models in LES of turbulence. J. Fluid Mech., 156: 55–62, 1985.Google Scholar
  97. 97.
    L. Stolcis and L. J. Johnston. Compressible flow calculations using a two-equation turbulence model and unstructured grids. In 7th International Conference on Numerical Methods in Laminar and Turbulent Flow, pp. 922–932, Stanford, Ca., USA, 1991.Google Scholar
  98. 98.
    J. Robichaux, D. K. Tafti, and S. P. Vanka. Large eddy simulations of turbulence on CM-2. CFD Laboratory, Dep. of Mech. and Ind. Eng., University of Illinois at Urbana-Champaign Urbana, IL 61801, Technical Report CFD 90–10, 1990.Google Scholar
  99. 99.
    A. Yoshizawa. A statistically-derived system of equations for turbulent shear flows. Phys. Fluids, 28: 5963, 1985.Google Scholar
  100. 100.
    A. Yoshizawa. Statistical theory for compressible turbulent shear flows, with the application to subgrid modelling. Phys. Fluids, 29: 2152–2164, 1986.ADSCrossRefMATHGoogle Scholar
  101. 101.
    T. A. Zang, R. B. Dahlburg, and J. P. Dahlburg. Direct and large-eddy simulation of 3-dimensional compressible Navier-Stokes-turbulence. Phys. Fluids, A 4: 127–140, 1992.ADSCrossRefMATHGoogle Scholar
  102. 102.
    Zeman. Dilatational dissipation: The concept and application in modelling compressible mixing layers. Phys. Fluids, A: 178–188, 1990.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • M. Meinke
    • 1
  • E. Krause
    • 1
  1. 1.RWTH AachenAachenGermany

Personalised recommendations