Advertisement

Numerical Issues in Large Eddy Simulation of Complex Turbulent Flows and Application to Aeroacoustics

Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 395)

Abstract

This paper reports on numerical issues in large eddy simulations that have been identified in recent computations of complex flows and theoretical studies. These issues include the effects of inherent numerical dissipation in upwind spatial finitedifference schemes on turbulent power spectra, and the sensitivity of separated and vortex dominated flow solutions to inflow and outflow boundary conditions. We also describe the results from several large eddy simulations of complex turbulent flows, including those performed with a novel numerical technique based on B-splines and a simulation of turbulent flow past an asymmetric trailing-edge with the objective of predicting the far-field noise.

Keywords

Circular Cylinder Subgrid Scale Separate Shear Layer Turbulent Channel Flow Numerical Issue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moin, P., Squires, K., Cabot, W., Lee, S., A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3, 2746–2757 (1991).ADSCrossRefMATHGoogle Scholar
  2. 2.
    Ghosal, S., Lund, T., Moin, P., Akselvoll, K., A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255 (1995).ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Germano, M., Piomelli, U., Moin, P., Cabot, W., A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991).ADSCrossRefMATHGoogle Scholar
  4. 4.
    Squires, K. D., Piomelli, U. In Proc. Ninth Symp. on Turbulent Shear Flows, Kyoto, Japan (1993).Google Scholar
  5. 5.
    Cabot, W. Dynamic localization and second-order subgrid-scale models in large eddy simulations of channel flow. Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ., 129–144 (1993).Google Scholar
  6. 6.
    Cabot, W., Moin, P. Large eddy simulation of scalar transport with dynamic subgrid scale model. In Large eddy simulation of complex engineering and geophysical flows, Ed. Galperin, B., Orszag, S. A., Cambridge Univ. Press, 141–158 (1993).Google Scholar
  7. 7.
    Wang, W.-P., Pletcher, R. H. On the large eddy simulation of a turbulent channel flow with significant heat transfer. Phys. Fluids 8, 3354–3366 (1996).ADSCrossRefMATHGoogle Scholar
  8. 8.
    Cabot, W. Large eddy simulations of time-dependent and buoyancy-driven channel flows. Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ., 45–60 (1992).Google Scholar
  9. 9.
    Akselvoll, K., Moin, P. Large eddy simulation of turbulent confined coannular jets. J. Fluid Mech. 315, 387–411, (1996).ADSCrossRefGoogle Scholar
  10. 10.
    Ghosal, S., Roger, M. M. A numerical study of self-similarity in a turbulent plane wake using large-eddy simulation. Phys. Fluids 9, 1729–1739 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    Beaudan, P., Moin, P. Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Report TF-62, Stanford University, Dept. Mechanical Engr., Thermosciences Division (1994).Google Scholar
  12. 12.
    Mittal, R., Moin, P. Suitability of upwind-biased finite-difference schemes for large-eddy simulation of turbulent flows. AIAA Journal 35, 1415–1417 (1997).ADSCrossRefMATHGoogle Scholar
  13. 13.
    Jansen, K. Large eddy simulation of flow around a NACA 4412 airfoil using unstructured grids. Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ. 225–232 (1996).Google Scholar
  14. 14.
    Kravchenko, A.G., Moin, P. B-spline methods and zonal grids for numerical simulations of turbulent flows. Report TF-73, Stanford University, Dept. Mechanical Engr. (1998).Google Scholar
  15. 15.
    Ghosal, S., Carati, D.,, Moin, P. On the representation of backscatter in dynamic localization models. Phys. Fluids 7, 606–616 (1995).ADSCrossRefMATHGoogle Scholar
  16. 16.
    Pierce, C. D., Moin, P. Large Eddy Simulation of a Confined Coaxial Jet with Swirl and Heat Release. 29th AIAA Fluid Dynamics Conference. AIAA 98–2892 (1998).Google Scholar
  17. 17.
    Lighthill, M. J. On sound generated aerodynamically; I. General theory. Proc. R. Soc. Lond. A 211, 564–587 (1952).ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Ghosal, S., Moin, P. The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comp. Phys. 118, 24–37 (1995).ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Vasilyev, O., Lund, T., Moin, P., A general class of commutative filters for LES in complex geometries. J. Comp. Phys. 146, 82–104 (1998).ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Ghosal, S. An analysis of numerical errors in large eddy simulation of turbulence. J. Comp. Phys. 125, 187–206 (1996).ADSCrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Lund, T. S., Kaltenbach, H.-J. Experiments with explicit filtering for LES using a finite-difference method. Annual Research Briefs, Center for Turbulence Research, NASA Ames Stanford Univ., 91–105 (1995).Google Scholar
  22. 22.
    Ghosal, S. Mathematical, physical constraints on LES 29th AIAA Fluid Dynamics Conference AIAA 98–2803 (1998).Google Scholar
  23. 23.
    Rai, M. M., Moin, P. Direct simulations of turbulent flow using finite-difference schemes. J. Comp. Phys. 96, 15–53 (1991).ADSCrossRefMATHGoogle Scholar
  24. 24.
    Kravchenko, A. G., Moin, P. On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comp. Phys. 131, 310–322 (1997).ADSCrossRefMATHGoogle Scholar
  25. 25.
    Morinishi, Y., Lund, T. S., Vasilyev, O. V.,, Moin, P. Fully conservative higher order finite difference schemes for incompressible flow. J. Comp. Phys. 143, 90–124 (1998).ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Kravchenko, A. G., Moin, P.,, Moser, R. Zonal embedded grids for simulations of wall-bounded turbulent flows. J. Comp. Phys. 127, 412–423 (1996).Google Scholar
  27. 27.
    Kravchenko, A. G., Moin, P.,, Shariff, K. B-spline method and zonal grids for simulations of complex turbulent flows. 35th Aerospace Sciences Meeting and Exhibit AIAA 97–0433 (1997).Google Scholar
  28. 28.
    Ong, L., Wallace, J. The velocity field of the turbulent very near wake of a circular cylinder. Experiments in Fluids 20, 441–453 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    Lourenco, L.M., Shih, C. Characteristics of the plane turbulent near wake of a circular cylinder. A particle image velocimetry study. Private communication, not published (1993).Google Scholar
  30. 30.
    Xia, M., Karniadakis, G. Em. The spectrum of the turbulent near-wake: a comparison of DNS and LES. In Advances in DNS/LES, Ed. Liu, C., Liu Z., Greyden Press, 129–136 (1997).Google Scholar
  31. 31.
    Cardell, G.S. Flow past a circular cylinder with a permeable splitter plate. Ph.D. Thesis, Graduate Aeronautical Laboratories, California Institute of Technology (1993).Google Scholar
  32. 32.
    Prasad. A., Williamson, C.H.K. The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375–402 (1997).Google Scholar
  33. 33.
    Chyu, C.K., Rockwell, D. Near-wake structure of an oscillating cylinder: effect of controlled shear-layer vortices. J. Fluid Mech. 322, 21–49 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    Bloor, M.S. The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19, 290–304 (1964).ADSCrossRefMATHGoogle Scholar
  35. 35.
    Norberg, C. An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287–316 (1994).ADSCrossRefGoogle Scholar
  36. 36.
    Fatica, M., Kaltenbach, H.-J., Mittal, R. Progress in large eddy simulation of flow in an asymmetric diffuser. Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ. (1996).Google Scholar
  37. 37.
    Kaltenbach, H-J. Large eddy simulation of flow through a plane, asymmetric diffuser Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ. 175–184. (1994).Google Scholar
  38. 38.
    Obi, S., Aoki, K., Masuda, S. Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser. Ninth Symposium on Turbulent Shear Flows, Kyoto, Japan. p. 305 (1993).Google Scholar
  39. 39.
    Akselvoll, K., Moin, P. Large-eddy simulation of turbulent confined coannular jets J. Fluid Mech. 315, 387–411 (1996).ADSCrossRefGoogle Scholar
  40. 40.
    Johnson, B. V., Bennett, J. C. Mass and momentum turbulent transport experiments with confined coaxial jets. NASA CR-16554 (1981).Google Scholar
  41. 41.
    Sommerfeld, M., Ando, A., Wennerberg, D. Swirling, Particle-Laden Flows Through a Pipe Expansion. Journal of Fluids Engineering 114, 648 (1992).ADSCrossRefGoogle Scholar
  42. 42.
    Wang, M. Computation of trailing-edge noise at low Mach number using LES and acoustic analogy. Annual Research Briefs-1998, Center for Turbulence Research, Stanford Univ./NASA Ames (1998).Google Scholar
  43. 43.
    Blake, W. K. A Statistical Description of Pressure and Velocity Fields at the Trailing Edge of a Flat Strut. DTNSRDC Report 4241, David Taylor Naval Ship R, D Center, Bethesda, Maryland (1975).Google Scholar
  44. 44.
    Ffowcs Williams, J. E., Hall, L. H. Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40, 657–670 (1970).ADSCrossRefGoogle Scholar
  45. 45.
    Kato, C., lida, A., Takano, Y., Fujita, H., Ikegawa, M. Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake. AIAA Paper 93–0145 (1993).Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • P. Moin
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations