Fundamentals of Large Eddy Simulation

  • M. Germano
Part of the International Centre for Mechanical Sciences book series (CISM, volume 395)


From the numerical point of view the Large Eddy Simulation can be interpreted as a procedure to solve under resolved Navier-Stokes equations. As such the methods applied to model the scales smaller than the scale resolved on the computational mesh can be read as one of the many ways to increase the numerical resolution.

From the theoretical point of view a Large Eddy Simulation can be formalized as a filtered solution of the Navier-Stokes equations. Filtering can be done in different ways: truncations in the spectral space, convolutional integrations in the physical space and in general we can formalize all that operationally as due to some averaging operator provided with some particular properties. Obviously the theoretical difficulties are due to the fact that it is relatively easy to filter data but usually very hard to filter equations.

In these lectures the fundamentals of the Large Eddy Simulation will be examined and discussed in order to provide and as possible to justify the main ingredients of such approach, the subgrid scale models. The practical objectives of the Large Eddy Simulations and how they are located between the Direct Numerical Simulations and the Reynolds Averaged Navier Stokes solutions will be exposed. Particular emphasis will be given to the operational approach and to its principal product, the dynamic modelling procedure.


Large Eddy Simulation Direct Numerical Simulation Eddy Viscosity Turbulent Stress Subgrid Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Peyret R. 1996 Handbook of Computational Fluid Mechanics,(ed.), Academic PressGoogle Scholar
  2. [2]
    Frisch U. 1995 Turbulence. The legacy of A. N. Kolmogorov,Cambridge University PressGoogle Scholar
  3. [3]
    Lesieur M. 1990 Turbulence in fluids,2nd edition Kluwer, DordrechtGoogle Scholar
  4. [4]
    Lee J. 1995 Chaos and direct numerical simulation in turbulence,Theoret. Comput. Fluid Dynamics 7, 363–395Google Scholar
  5. [5]
    Meneveau C. 1994 Statistics of turbulence subgrid scale stresses: Necessary conditions and experimental tests,Phys. Fluids 6, 815–833Google Scholar
  6. [6]
    Germano M. 1996 A statistical formulation of the dynamic model,Phys. Fluids 8, 565–570Google Scholar
  7. [7]
    Monin A.S., Yaglom A.M. 1971 Statistical Fluid Mechanics The MIT Press, Cambridge, MassachusettsGoogle Scholar
  8. [8]
    Launder B.E. 1989 Second moment closure: present… and future,Int. J. Heat and Fluid Flow 10, 282–300Google Scholar
  9. [9]
    Leschziner M. A. 1995 Computation of aerodynamic flows with turbulence transport models based on second moment closure, Computers Fluids, 24, 377–392Google Scholar
  10. [10]
    Tulapurkara E. G. 1997 Turbulence models for the computation of flow past airplanes, Prog. Aerospace Sci., 33, 71–165Google Scholar
  11. [11]
    Leonard A. 1974 Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows,Adv. in Geophysics, 18A, 237–248Google Scholar
  12. [12]
    Germano M. 1992 Turbulence: the Filtering Approach, J. Fluid Mech. 238, 325–336Google Scholar
  13. [13]
    Yoshizawa A. 1982 A statistically derived subgrid model for the large-eddy simulation of turbulence Phys.Fluids 25, 1532–1538MATHGoogle Scholar
  14. [14]
    Lele S. K. 1992 Compact Finite Difference Schemes with Spectral like Resolution, J. Comput. Phys. 103, 16–42Google Scholar
  15. [15]
    Boussinesq J.1877 Essai sur la théorie des eaux courantes Mém. Savants Etrangers Acad. Sciences 26, Paris, 1–680Google Scholar
  16. [16]
    Reynolds 0. 1895 On the dynamical theory of incompressible viscous fluids and the determination of the criterion Philos.Trans.Roy.Soc.A 186, 123–164Google Scholar
  17. [17]
    Kampé de Fériet J. R. Betchov 1951 Theoretical and experimental averages of turbulent functions Proceed. Kon. Nederl. Akad. Wetensch., vol 53, 167–207Google Scholar
  18. [18]
    Kampé de Fériet J. 1957 La notion de moyenne dans la théorie de la turbulence Rend. Sem. Mat. Fis. di Milano 27, 167–207Google Scholar
  19. [19]
    Dubreil-Jacotin M.L. 1957 Sur les axiomes des moyennes CIME, Corso sulla teoria della turbolenza, 107–114, Levrotto e Bella, TorinoGoogle Scholar
  20. [20]
    Arbault J. 1957 Transformation de Reynolds sur un ensemble fini CIME, Corso sulla teoria della turbolenza, 115–121 Levrotto e Bella, TorinoGoogle Scholar
  21. [21]
    Rota G.C. 1960 Spectral theory of smoothing operators Proc. Nat. Acad. Sci. USA, vol. 46, 863–868Google Scholar
  22. [22]
    Molinaro I. 1957 Determination d’une R-transformation de Reynolds Comptes Rendus Acad.Sciences, vol. 244, 2890–2893Google Scholar
  23. [23]
    Germano M. 1986 Differential filters for the large eddy numerical simulation of turbulent flows,Phys. Fluids, 29, 1755–1757Google Scholar
  24. [24]
    Rogallo R.S., Moin P. 1984 Numerical Simulation of Turbulent Flows, Ann. Rev. Fluid Mech. 16, 99–137Google Scholar
  25. [25]
    Lilly D.K. 1966 On the Application of the Eddy Viscosity Concept in the Inertial Sub-Range of Turbulence NCAR Manuscript 123,Boulder,ColoradoGoogle Scholar
  26. [26]
    Deardorff J.W. 1970 A Numerical Study of Three Dimensional Channel Flow at Large Reynolds Numbers,J. Fluid Mech. 41, 453–480Google Scholar
  27. [27]
    Schumann U. Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli J. Comput. Phys. 18, 376–404Google Scholar
  28. [28]
    Smagorinsky J. 1963 General Circulation Experiments with the Primitive Equations.I The Basic Experiment Mon.Weather Rev. 91, 99–164Google Scholar
  29. [29]
    Scotti A., Meneveau C., Lilly D.K. 1993 Generalized Smagorinsky model for anisotropic grids, Phys. Fluids A5, 2306–2308Google Scholar
  30. [30]
    Ferziger J.H. 1982 State of the Art in Subgrid-Scale Modeling Numerical and Physical Aspects of Aerodynamic Flows, Ed. T.Cebeci, Springer-VerlagGoogle Scholar
  31. [31]
    Bardina J., Ferziger J.H., Reynolds W.C. 1980 Improved subgrid scale models for Large Eddy Simulation AIAA Paper 80–1357Google Scholar
  32. [32]
    Speziale, C.G. 1985 Galilean Invariance of Subgrid-Scale Stress Models in the Large Eddy Simulation of Turbulence J.Fluid Mech. 156, 55–62Google Scholar
  33. [33]
    Germano M. 1986 A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations,Phys. Fluids 29, 2323–2324Google Scholar
  34. [34]
    Härtel C., Kleiser L., Unger F., Friedrich R. 1994 Subgrid scale energy transfer in the near wall region of turbulent flows, Phys. Fluids 6, 3130–3143Google Scholar
  35. [35]
    Speziale, C. G. 1998 Turbulence Modeling for Time-Dependent RANS and VLES: A review, AIAA J. 36, 173–184.Google Scholar
  36. [36]
    Germano M. 1986 Differential filters of elliptic type,Phys. Fluids 29, 1757–1758Google Scholar
  37. [37]
    Fuchs L. 1996 An exact SGS model for LES, Advances in Turbulence V I, Eds. S. Gavrilakis, L. Machiels and P. A. Monkewitz, Kluwer, DordrechtGoogle Scholar
  38. [38]
    Lilly D. K. 1992 A proposed modification of the Germano subgrid scale closure method, Phys.Fluids A 4, 633–635Google Scholar
  39. [39]
    Ghosal S., Lund T., Moin P., Akselvoll K. 1995 A dynamic localization model for large-eddy simulation of turbulent flows, J. Fluid Mech. 286, 229–255Google Scholar
  40. [40]
    Germano M., Piomelli U., Moin P., Cabot W. H. 1991 A dynamic subgrid-scale eddy viscosity model Phys. Fluids A 3, 1760–1765Google Scholar
  41. [41]
    Meneveau C., Lund T. S., Cabot W. H. 1994 A Lagrangian dynamic subgrid scale model of turbulence, J. Fluid Mech. 319, 353–385Google Scholar
  42. [42]
    Bradshaw P. 1973 Effects of streamline curvature on turbulent flow,AGARDograph 169Google Scholar
  43. [43]
    Shang J. S., Hankey Jr. W. L., Law C. H. 1976 Numerical simulation of shock wave turbulent boundary layer interaction, AIAA J. 14, 1451–1457Google Scholar
  44. [44]
    Shah K. B., Ferziger J. H. 1997 Stimulated small scale SGS model and its application to channel flow,Proceedings of the Eleventh Symposium on Turbulent Shear Flows, Vol. 2, 16–1–6Google Scholar
  45. [45]
    Ghosal S., Moin P. 1995 The basic equations for the large eddy simulation of turbulent flows in complex geometries, J. Comput. Phys. 118, 24–37Google Scholar
  46. [46]
    Reynolds W. C. 1984 Numerical simulations of turbulence,Ecole d’été CEA, EDF, INRIA, Eyrolles, Paris, Vol. 2, pag. 281Google Scholar
  47. [47]
    Zhou Y., Hossain M. 1989 A critical look at the use of filters in large eddy simulation, Physics Letters A, 139, 330–332Google Scholar
  48. [48]
    Geurts B. 1997 Inverse modelling for LES,Phys. Fluids 9, 3585–3587Google Scholar
  49. [49]
    Germano M., Geurts B. J., Kuerten J. G. M. 1998 Dynamic inverse modeling,submitted to Phys. FluidsGoogle Scholar
  50. [50]
    Germano M. 1998 Comment on “Turbulence Modeling for Time-Dependent RANS and VLES: A Review”,AIAA J. 36, 1766Google Scholar
  51. [51]
    Spalart P. R., Jou W. H., Strelets M., Allmaras S. R. 1997 Comments on the feasibility of LES for wings, and on a hybrid RANS/LES Approach,Proceedings of the First AFOSR International ConferenceGoogle Scholar
  52. [52]
    Libby P. A., Williams F.A., 1980 Turbulent reacting flows.,Springer VerlagGoogle Scholar
  53. [53]
    Pope S. B., 1990 Computations of turbulent combustion: progress and challenges, Twenty Third Symposium (International) on Combustion, Plenary Lecture, Orléans, France, July 22–27, 1990Google Scholar
  54. [54]
    Gao F., O’Brien E. E., 1993 A large eddy simulation scheme for turbulent reacting flows, Phys. Fluids, A5, 1282–1284Google Scholar
  55. [55]
    Chollet J.P., Si Ameur M., Vallcorba M.R., 1994 Direct and Large Eddy Simulations of chemically reacting flows, Direct and Large Eddy Simulation I, Kluwer, Dordrecht, 375–385.CrossRefGoogle Scholar
  56. [56]
    Germano M. 1993 Multilevel subgrid modelling,Proceedings 5th International Symposium on Refined Flow Modelling and Turbulence Measurements, Paris, 8188Google Scholar
  57. [57]
    Germano M., 1996 The statistical meaning of the Boussinesq approximation in terms of the Favre averages,ERCOFTAC Bulletin 28, 59–60Google Scholar
  58. [58]
    Germano M. 1997 Averaging procedures for the Large Eddy Simulation of variable density flows,Variable Density Low-Speed Turbulent Flows, L. Fulachier et al. (eds.), Kluwer, 101–108Google Scholar
  59. [59]
    Germano M., Maffio A., Sello S., Mariotti G. 1997 On the extension of the dynamic modelling procedure to turbulent reacting flows,Direct and Large Eddy Simulation II, 291–300, J. P. Chollet et al. (eds.), KluwerGoogle Scholar
  60. [60]
    Favre A. 1965 Equations des gas turbulents compressibles,Journal de Mécanique, 4, 361–390Google Scholar
  61. [61]
    Moin P., Squires K., Cabot W., Lee S. 1991 A dynamic subgrid scale model for compressible turbulence and scalar transport, Phys. Fluids A3, 2746–2757Google Scholar
  62. [62]
    El-Hady N. M., Zang T. H., Piomelli U. 1994 Application of the dynamic subgrid scale model to axisymmetric transitional boundary layer at high speed, Phys. Fluids 6, 1299–1309Google Scholar
  63. [63]
    Cook A.W., Riley J.J., 1994 A subgrid model for equilibrium chemistry in turbulent flows Phys. Fluids, 6, 2868–2870Google Scholar
  64. [64]
    Papoulis A., 1965 Probability, Random Variables and Stochastic Processes,McGraw-HillGoogle Scholar
  65. [65]
    Tennekes H., Lumley J.L. 1972 A first course in turbulence, MIT Press, Cambridge MAGoogle Scholar
  66. [66]
    Pope S.B., 1983 Consistent modelling of scalar in turbulent flows,Phys. Fluids, 26,404–408.Google Scholar
  67. [67]
    Shih T.H., Lumley J.L., Chen J.Y., 1990 Second order modeling of a passive scalar in a turbulent shear flow, AIAA J., 28, 610–617.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • M. Germano
    • 1
  1. 1.Polytechnic of TurinTurinItaly

Personalised recommendations