Digital Processing and Evaluation of Fringe Patterns in Optical Metrology and Non-Destructive Testing

  • W. Osten
Part of the International Centre for Mechanical Sciences book series (CISM, volume 403)


The basic principle of modern optical methods in experimental solid mechanics such as holographic interferometry, speckle metrology, fringe projection and moiré techniques consists either in a specific structuring of the illumination of the object by incoherent projection of fringe patterns onto the surface under test or by coherent superposition (interference) of light fields representing different states of the object. A common property of the methods is that they produce fringe pattern as output. In these intensity fluctuations the quantities of interest — coordinates, displacements, refractive index and others — are coded in the scale of the fringe period. Consequently the task to be solved in fringe analysis can be defined as the conversion of the fringe pattern into a continuous phase map taking into account the quasi sinusoidal character of the intensity distribution. The course starts with a physical modeling of the image content that contains the relevant disturbances in optical metrology. After that the main techniques for quantitative phase reconstruction together with the most commonly used image processing methods are presented. Because image processing is an important prerequisite for holographic non-destructive evaluation (HNDE) an overview of modern approaches in automatic flaw detection based on knowledge assisted and neural network techniques is given. Finally modern software tools for digital processing of fringe patterns are presented.


Fringe Pattern Digital Processing Speckle Noise Holographic Interferometry Phase Unwrap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Steinbichler Optotechnik GmbH, Am Bauhof 4, D-83115, Germany, „FRAMES - FRinge Analysis and MEasuring System“Google Scholar
  2. (2).
    Warsaw Univ. of Technol., Inst. of Micromechanics and Photonics, Chodkiewicza Street 8, 02–525 Warsaw, Poland, „Fringe Laboratory“Google Scholar
  3. (3).
    BIAS GmbH, Klagenfurter Str. 2, D-28359 Bremen, Germany, „FRINGE PROCESSOR’ - Computer aided fringe analysis under MS Windows“Google Scholar
  4. (4).
    Halliwell, N. et al.(Eds.), Fringe Analysis-92, Proc, of the FASIG Conference, Leeds, 1992Google Scholar
  5. (5).
    Osten, W., Pryputniewicz, R. J., Reid, G. T., and Rottenkolber, H., (Eds.), Fringe-89, Proc. 1st Intern. Workshop on Automatic Processing of Fringe Patterns, Berlin, Akademie Verlag, 1989 ’Google Scholar
  6. (6).
    Reid, G. T., (Ed.), Fringe Pattern Analysis, Proc. SPIE Vol. 1163, Bellingham, 1989Google Scholar
  7. (7).
    Jüptner, W., and Osten, W.,(Eds.), Fringe-93 Fringe-97, Proc. 2nd 3rd Intern. Workshop on Automatic Processing of Fringe Patterns, Berlin, Akademie Verlag, 1993 1997Google Scholar
  8. (8).
    Osten, W., Digital Processing and Evaluation of Interference Images, (in German), Berlin, Akademie Verlag, 1991Google Scholar
  9. (9).
    Osten, W., and Höfling, R., “Digital Holographic and Speckle Interferometry,” In: Frankowski, G., Abramson, N., and Füzessy, Z., (Eds.), Application of Metrological Laser Methods in Machines and Systems, Berlin, Akademie Verlag, 1991, pp. 265–298Google Scholar
  10. (10).
    Robinson, D. W., and Reid, G. T., (Eds.), Interferogram Analysis, Bristol and Philadelphia, IOP Publishing Ltd, 1993Google Scholar
  11. (11).
    Kaufmann, G. H., “Automatic Fringe Analysis Procedures in Speckle Metrology,” In: Sirohi, R. J. (Ed.), Speckle Metrology, New York, Basel, Hong Kong, Marcel Dekker Inc., 1993, pp. 427–472Google Scholar
  12. (12).
    Osten, W.; Jüptner, W.: Digital Processing of Fringe Patterns. In: Rastogi, P.K. (Ed.): Handbook of Optical Metrology. Artech House Publishers, Boston and London 1997Google Scholar
  13. (13).
    Kreis, Th, “Computer-Aided Evaluation of Holographic Interferograms,” In: Rastogi, P. K., (Ed.), Holographic Interferometry, Berlin, Springer Verlag, 1994Google Scholar
  14. (14).
    Schwider, J., “Advanced Evaluation Techniques in Interferometry,” In: Wolf, E., (Ed.), Progress in Optics, Vol. XXV III, Amsterdam, Elsevier Science Pupl. B.V., 1990Google Scholar
  15. (15).
    Glünder, H., and Lenz, R.: „Fault detection in nondestructive testing by an opto-electronic hybrid processor,“ Proc. SPIE Vol. 370(1982), pp. 157162Google Scholar
  16. (16).
    Stetson, K.-A.: A rigorous theory of the fringes of hologram interferometry. Optik 29 (1969), 386–400Google Scholar
  17. (17).
    Lowenthal, S., and Arsenault, H., Image formation for coherent diffuse objects: statistical properties, J. Opt. Soc. Am. 60(1979)11, 1478–1483Google Scholar
  18. (18).
    Goodman, J.W., “Statistical properties of laser speckle patterns,” In: Dainty, J.C. (Ed.), Laser speckle and related phenomena, Berlin, Springer Verlag, 1983, pp. 9–75Google Scholar
  19. (19).
    Dändliker, R., “Heterodyne holographic interferometry,” In: Wolf, E., (Ed.), Progress in Optics, Vol. X VII, Amsterdam, Elsevier Science PupI. B.V., 1980Google Scholar
  20. (20).
    Tur, M., Chin, C., and Goodman, J.W., “When is speckle noise multiplicative,” Appl. Opt. 21 (1982), pp. 1157–1159ADSCrossRefGoogle Scholar
  21. (21).
    Jenkins, T.E., Optical Sensing Techniques and Signal Processing, Englewood Cliffs, Prentice/Hall International, 1987Google Scholar
  22. (22).
    Creath, K., „Phase measurement interferometry: Beware these errors,“ Proc. SPIE Vol. 1553, 1991, pp. 213–220ADSCrossRefGoogle Scholar
  23. (23).
    Sollid, J.E., “Holographic interferometry applied to measurements of small static displacements of diffusely reflecting surfaces,” Appl. Opt. 8 (1969), pp. 1587–1595Google Scholar
  24. (24).
    Höfling, R., and Osten, W., „Displacement measurement by image-processed speckle patterns,“ J. Mod. Opt. 34(1987)5, 607–617Google Scholar
  25. (25).
    Nakadate, S., Magome, N., Honda, T, and Tsujiuchi, J., “Hybrid holographic interferometer for measuring three-dimensional deformations,” Opt. Eng. 20(1981)2, 246–252Google Scholar
  26. (26).
    Kreis, T., “Digital holographic interference-phase measurement using the Fourier-transform method,” J.Opt.Soc.Am. 3(1986)6, 847–855Google Scholar
  27. (27).
    Takeda, M., Ina, H., and Kobayaschi, S., “Fourier-transform method of fringe pattern analysis for computer based topography and interferometry,” J.Opt.Soc.Am. 72(1982)1, 156–160Google Scholar
  28. (28).
    Bruning, J.H., Herrioff, D. R., Gallagher, J. E., Rosenfeld, D. P., White, A. D., and Brangaccio, D. J., “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl.Opt. 13(1974)11, 2693–2703Google Scholar
  29. (29).
    Creath, K., „Temporal phase measurement methods,“ In (10), pp. 94–140Google Scholar
  30. (30).
    Kujawinska, M., „Spatial phase measurement methods,“ In (10), pp.141–193Google Scholar
  31. (31).
    Crimmins, T.R., „Geometric filter for speckle reduction,“ Appl. Opt. 24(1985)10, pp. 1434–1443Google Scholar
  32. (32).
    Davila, A., Kerr, D., and Kaufmann, G.H., „Digital processing of electronic speckle pattern interferometry addition fringes,“ Appl. Opt. 33(1994)25, pp. 5964–5968Google Scholar
  33. (33).
    Yu, F.T.S., and Wang, E.Y, „Speckle reduction in holography by means of random spatial sampling, “ Appl.Opt. 12 (1973), pp. 1656–1659Google Scholar
  34. (34).
    Sadjadi, F,A., „Perspective on techniques for enhancing speckled imagery,“ Opt. Eng. 29(1990)1, pp. 25–30Google Scholar
  35. (35).
    Jain, A.K., and Christensen, C.R., „Digital processing of images in speckle noise,“ In: Carter, W.H. (Ed.), Applications of speckle phenomena, Proc. SPIE Vol. 243(1980), pp. 46–50Google Scholar
  36. (36).
    Eichhorn, N, and Osten, W., „An algorithm for the fast derivation of line structures from interferograms,“ J.Mod.Opt. 35(1988)10, 1717–1725Google Scholar
  37. (37).
    Guenther, D.B., Christensen, C.R., and Jain, A., „Digital processing of speckle images,“ In: Proc. IEEE Conf. on Pattern Recognition and Image Processing, 1978, pp. 85–90Google Scholar
  38. (38).
    Hodgson, R.M., Bailey, D.G., Nailor. M.J., Ng, A.L., and McNeil, S,J., „Properties, implementation and application of rank filters,“ Image and Vision Computing 3(1985)1, pp. 3–14Google Scholar
  39. (39).
    Ruttimann, U.E., and Webber, R.L., „Fast computing median filters on general purpose image processing systems,“ Opt. Eng. 25(1986)9, pp. 1064–1067Google Scholar
  40. (40).
    Stanke, G., and Osten, W., „Application of different types of local filters for the shading correction of interferograms,“ In (5), pp. 140–144Google Scholar
  41. (41).
    Bieber, E., and Osten, W., „Improvement of speckled fringe patterns by Wiener filtering,“ Proc. SPIE Vol. 1121 (1989), pp. 393–399ADSCrossRefGoogle Scholar
  42. (42).
    Lim, J.S., and Nawab, H., „Techniques for speckle noise removal,“ Opt. Eng. 20 (1981), pp. 472–480ADSGoogle Scholar
  43. (43).
    Ostrem, J.S., „Homomorphic filtering of specular scenes,“ IEEE Trans. SMC-11(1981)5, pp.385–386Google Scholar
  44. (44).
    Winter, H., Unger, S., and Osten, W.: „The application of adaptive and anisotropic filtering for the extraction of fringe patterns skeletons,“ In: Proc. Fringe ‘89, Akademie Verlag Berlin 1989, pp. 158–166Google Scholar
  45. (45).
    Yu, Q., and Andresen, K., „New spin filters for interferometric fringe patterns and grating patterns,“ Appl. Opt. 33(1994)15, pp. 3705–3711Google Scholar
  46. (46).
    Crimmins, T.R., „Geometric filter for reducing speckles,“ Opt. Eng. 25(1986)5, pp. 651–654Google Scholar
  47. (47).
    Sonka, M., Hlavac, V., and Boyle, R., Image processing, Analysis and Machine Vision, Chapman Hall Computing, London 1993CrossRefGoogle Scholar
  48. (48).
    Yu, Q., Andresen, K., Osten, W., and Jüptner, W.: „Analysis and removing of the systematic phase error in interferograms,“ Opt. Eng. 33(1994)5, 1630–1637Google Scholar
  49. (49).
    Dorst, L., and Groen, F., „A system for quantitative analysis of interferograms,“ Proc. SPIE Vol. 599 (1985), pp. 155–159CrossRefGoogle Scholar
  50. (50).
    Vrooman, H.A., and Maas, A.A.M., „Interferograms analysis using image processing techniques,“ Proc. SPIE Vol. 1121 (1990), pp. 655–659ADSCrossRefGoogle Scholar
  51. (51).
    Yu, Q., Andresen, K., Osten, W., and Jüptner, W.: Noise free normalized fringe patterns and local pixel transforms for strain extraction. Appl. Opt. 35(1996)20, pp. 3783–3790Google Scholar
  52. (52).
    Robinson, D.W., „Automatic fringe analysis with a computer image processing system,“ Appl. Opt. 22(1983)14, 2169–2176Google Scholar
  53. (53).
    Schemm, J.B., and Vest, C.M., „Fringe pattern recognition and interpolation using nonlinear regression analysis,“ AppI. Opt. 22(1983)18, 2850–2853Google Scholar
  54. (54).
    Becker, F., and Yung, H., „Digital fringe reduction technique applied to the measurement of three-dimensional transonic flow fields,“ Opt. Eng. 24 (1985), 3, 429–434Google Scholar
  55. (55).
    Joo, W., and Cha, S. S., „Automated interferogram analysis based on an integrated expert system,“ AppI. Opt. 34(1995)32, 7486–7496Google Scholar
  56. (56).
    Mieth, U., and Osten, W.: „Three methods for the interpolation of phase values between fringe pattern skeleton,“ Proc. SPIE Vol. 1121, Interferometry-89, 1989, pp. 151–154Google Scholar
  57. (57).
    Burton, D.R., and Lalor, M.J.,“Managing some problems of Fourier fringe analysis,” Proc. SPIE Vol. 1163 (1989), pp. 149–160ADSCrossRefGoogle Scholar
  58. (58).
    Abramson, N., The making and evaluation of holograms, London, Academic Press, 1981Google Scholar
  59. (59).
    Kreis, T., “Fourier-transform evaluation of holographic interference patterns,” Proc. SPIE Vol. 814 (1987), pp. 365–371Google Scholar
  60. (60).
    Takeda, M., „Spatial-carrier fringe pattern analysis and its applications to precision interferometry and profilometry: An overview,“ Industrial Metrology 1 (1990), pp. 79–99CrossRefMathSciNetGoogle Scholar
  61. (61).
    Womack, K.H., „Interferometric phase measurement using synchronous detection,“ Opt. Eng. 23(1984)4, pp. 391–395Google Scholar
  62. (62).
    Mertz, L., „Real-time fringe pattern analysis,“ AppI. Opt. 22 (1983), pp. 1535–1539Google Scholar
  63. (63).
    Macy, W.W., „ Two-dimensional fringe-pattern analysis,“ Appl. Opt. 22 (1983), pp. 3898–3901Google Scholar
  64. (64).
    Ransom. P.L., and Kokal, J.V., „Interferogram analysis by modified sinusoid fitting technique,“ Appl. Opt. 25 (1986), 4199–4204Google Scholar
  65. (65).
    Morgan, C.J., „Least-squares estimation in phase-measurement interferometry,“ Optics Letters 7(1982)8, pp. 368–370Google Scholar
  66. (66).
    Greifenkamp, J,E., „A generalized data reduction for heterodyne interferometry,“ Opt.Eng. 23(1984)4, pp. 350–352Google Scholar
  67. (67).
    Kreis, T., Holographic Interferometry - Principles and Methods, Berlin, Akademie Verlag, 1996Google Scholar
  68. (68).
    Wyant, J.C., and Creath, K., „Recent advances in interferometric optical testing,“ Laser Focus/Electro Optics, Nov. 1985, pp. 118–132Google Scholar
  69. (69).
    Carré, P., „Installation et utilisation du comparateur photoelectrique et interferentiel du bureau international des poids et measures,“ Metrologia 2(1966)1, pp. 13–23Google Scholar
  70. (70).
    Jüptner, W., Kreis, T., and Kreitlow, H., „Automatic evaluation of holographic interferograms by reference beam phase shifting,“ Proc. SPIE Vol. 398 (1983), pp. 22–29CrossRefGoogle Scholar
  71. (71).
    Schwider, J., Burow, R., Elßner, K.-E., Grzanna, J., Spolaczyk, R. and, Merkel, K., „Digital wavefront measuring interferometry: Some systematic error sources,“ AppI. Opt. 22(1983)21, 3421–3432Google Scholar
  72. (72).
    Hariharan, P,, Oreb, B.F. and, Eiju, T., „Digital phase shifting interferometry: a simple erro-compensating phase calculation algorithm,“ Appl. Opt. 26 (1987),pp. 2504–2505Google Scholar
  73. (73).
    Koliopoulos, C., „Interferometric optical phase measurement techniques,“ Ph.D. Thesis, Optical Science Center Tucson, Univ. Arizona 1981Google Scholar
  74. (74).
    Creath, K, „Comparison of phase-measurement algorithms,“ Proc. SPIE Vol. 680 (1986), pp. 19–28Google Scholar
  75. (75).
    Creath, K., „Phase-measurement interferometry techniques,“ In: E. Wolf (Ed.): Progr. in Optics, Vol. 26, Amsterdam, North-Holland, 1988, pp. 349393Google Scholar
  76. (76).
    Hunter, J.C., and Collins, M.W., „Holographic interferometry and digital fringe processing,“ J.Phys.D.: Appl. Phys. 20 (1987), pp. 683–691ADSCrossRefGoogle Scholar
  77. (77).
    Yu, Q., and Andresen, K., „Fringe orientation maps and 2D derivative-sign binary image methods for extraction of fringe skeletons,“ Appl. Opt. 33(1994)29, pp. 6873–6878Google Scholar
  78. (78).
    Osten, W.; Nadeborn, W.; Andrä, P.: General hierarchical approach in absolute phase measurement. Proc. SPIE Vol. 2860 (1996), 2–13ADSCrossRefGoogle Scholar
  79. (79).
    Robinson, D.R, „Phase unwrapping methods,“ In: (10), pp. 194–229Google Scholar
  80. (80).
    Idesawa, M, Yatagai, T., and Soma, T., AppI. Opt. 16 (1977), pp. 2152–2162ADSCrossRefGoogle Scholar
  81. (81).
    Varman, P.O., Optics and Lasers in Engineering 5 (1984), pp. 41–58ADSCrossRefGoogle Scholar
  82. (82).
    Colin, A., and Osten, W.: „Automatic support for consistent labeling of skeletonized fringe patterns,“ J. Mod. Opt. 42(1995)5, 945–954Google Scholar
  83. (83).
    Ghiglia, D.C., Mastin, G.A., and Romero, L.A., „Cellular-automata method for phase unwrapping, “ J.O.S.A.(A) 4 (1987), pp. 267–280CrossRefGoogle Scholar
  84. (84).
    Osten, W., and Höfling, R., „The inverse modulo process in automatic fringe analysis–problems and approaches,“ Proc.lnt. Conf. on Hologram Interferometry and Speckle Metrology. Baltimore 1990, pp. 301–309Google Scholar
  85. (85).
    Shough, D., “Beyond fringe analysis,” Proc. SPIE Vol. 2003 (1993), pp. 208–223Google Scholar
  86. (86).
    Huntley, J.M„Buckland, J.R., „Characterization of sources of 27E-phase discontinuity in speckle interferograms,“ J.O.S.A. A 12(1995)9, 1990–1996Google Scholar
  87. (87).
    Huntley, J.M., „Noise-immune phase unwrapping algorithm,“ Appl. Opt. 28 (1989), 3268–3270Google Scholar
  88. (88).
    Greivenkamp, J.E., „Sub-Nyquist interferometry,“ AppI. Opt. 26 (1987), pp. 5245–5258Google Scholar
  89. (89).
    Bone, D.B., „Fourier fringe analysis: the two-dimensional phase unwrapping problem,“ AppI. Opt. 30(1991)25, pp. 3627–3632Google Scholar
  90. (90).
    Andrä, P., Mieth, U., and Osten, W., „Some strategies for unwrapping noisy interferograms in phase-sampling-interferometry,“ Proc. SPIE Vol. 1508 (1991), pp. 50–60ADSCrossRefGoogle Scholar
  91. (91).
    Judge, R.T., Quan, C., and Bryanston-Cross, P.J., „Holographic deformation measurements by Fourier transform technique with automatic phase unwrapping,“ Opt. Eng. 31(1992)3, 533–543Google Scholar
  92. (92).
    Takeda, M., Nagatome, K., and Watanabe, Y., „Phase unwrapping by neural network,“ In: (7), pp. 137–141Google Scholar
  93. (93).
    Huntley, J.M., Cusack, R., and Saldner, H., „New phase unwrapping algorithms,“ In: (7), pp. 148–153Google Scholar
  94. (94).
    Huntley, J.M., and Saldner, H., „Temporal phase-unwrapping algorithm for automated interferogram analysis,“ Appl. Opt. 32(1993)17, pp. 3047–3052Google Scholar
  95. (95).
    Ghiglia, D.C., and Romero, L.A., „Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,“ J.O.S.A. A 11(1994)1, pp, 107–117Google Scholar
  96. (96).
    Judge, T.R., and Bryanston-Cross, P.J., „A review of phase unwrapping techniques in fringe analysis,“ Opt. Lasers Eng. 21 (1994), pp. 199–239CrossRefGoogle Scholar
  97. (97).
    Takeda, M., “ Current trends and future directions of fringe analysis,” Proc. SPIE Vol. 2544 (1995), pp. 2–10Google Scholar
  98. (98).
    Owner-Petersen, M., „Phase map unwrapping: A comparison of some traditional methods and a presentation of a new approach,“ Proc. SPIE Vol. 1508 (1991), pp. 73–82ADSCrossRefGoogle Scholar
  99. (99).
    Gierloff,, J.J., „Phase unwrapping by regions,“ Proc. SPIE Vol. 818 (1987), pp. 267–278Google Scholar
  100. (100).
    Ettemeyer, A., Neupert, U., Rottenkolber, H., and Winter, C., „Fast and robust analysis of fringe patterns - an important step towards the automation of holographic testing procedures,“ In: (5), pp. 23–31Google Scholar
  101. (101).
    Lin, Q., Vesecky, J.F., and Zebker, H.A., „ Phase unwrapping through fringe-line detection in synthetic aperture radar interferometry,“ AppI. Opt. 33(1994)2, pp. 201–208Google Scholar
  102. (102).
    Kreis, T.M., Biedermann, R., and Jüptner, W.P.O., „Evaluation of holographic interference patterns by artificial neural networks,“ Proc. SPIE Vol 2544 (1995), pp. 11–24ADSCrossRefGoogle Scholar
  103. (103).
    Marroquin, J.L.; Rivera, M., „Quadratic regularization functionals for phase unwrapping,“ J.O.S.A. A 12 (1995), 2393–2400MathSciNetGoogle Scholar
  104. (104).
    Marroquin, J.L; Servin, M.; Rodriguez-Vera, R., „Adaptive quadrature filters for multi-phase stepping images,“ Opt. Let. 23(1998)4, 238–240Google Scholar
  105. (105).
    Marroquin, IL; Rivera, M.; Botello, S.; Rodriguez-Vera, R; Servin, M., „Regularization methods for processing fringe pattern images,“ Proc. SPIE Vol. 3478 (1998), 26–36ADSCrossRefGoogle Scholar
  106. (106).
    Osten, W., „Active optical metrology–a definition by examples,“ Proc. SPIE Vol. 3478 (1998), pp. 11–25Google Scholar
  107. (107).
    B. Hofmann, „III-posedness and regularization of inverse problems–a review of mathematical methods,“ In: H. Lübbig, The inverse problem. Akademie Verlag Berlin 1995, pp. 45–66Google Scholar
  108. (108).
    J. Hadamard, Lectures on Cauchy’s problem in partial differential equations. Yale University Press, New Haven 1923Google Scholar
  109. (109).
    A.N. Tikhonov, „Solution of incorrectly formulated problems and the regularization method,“ Sov. Math. DokI. 4 (1963), 1035–1038Google Scholar
  110. (110).
    A.N. Tikhonov, V.Y. Arsenin, Solution of ill-posed problems. (TransI. From Russian) Winston and Sons, Washington 1977Google Scholar
  111. (111).
    Ghiglia, D.C.; Pritt, M.D., Two-dimensional phase unwrapping. Wiley, New York 1998MATHGoogle Scholar
  112. (112).
    Stetson, K.A., „Use of sensitivity vector variations to determine absolute displacements in double exposure hologram interferometry,“ Appl. Opt 29 (1990), pp. 502–504Google Scholar
  113. (113).
    Osten, W.; Nadeborn, W.; and Andrä, P., „General hierarchical approach in absolute phase measurement,“ Proc. SPIE Vol. 2860 (1996), 2–13ADSCrossRefGoogle Scholar
  114. (114).
    Abramson, N, “The Holo-Diagram V: A Device for practical interpreting of hologram interference fringes,” Appl. Opt. 11(1972), pp. 1 143–1 147Google Scholar
  115. (115).
    Skudayski, U., and Jüptner, W., “Synthetic wavelength interferometry for the extension of the dynamic range,” Proc. SPIE Vol. 1508(1991), pp, 6872Google Scholar
  116. (116).
    Yuk, K.C.,Jo, J. H. and Chang, S., “Determination of the absolute order of shadow moiré fringes by using two differently colored light sources,” Appl. Opt. 33(1994)1, pp. 130–132Google Scholar
  117. (117).
    Altschuler, M.D., Altschuler, B.R., and Taboda, J., “Measuring surfaces space-coded by laser-projected dot matrix:” Proc. SPIE Vol. 182 (1979), pp. 163–172ADSGoogle Scholar
  118. (118).
    Wahl, F.M., “A coded light approach for depth map acquisition,” G. Hartmann (Ed.): Mustererkennung 1986, Springer Verlag 1986, pp. 12–17Google Scholar
  119. (119).
    Zumbrunn, R. “ Automatic fast shape determination of diffuse reflecting objects at close range by means of structured light and digital phase measurement,” ISPRS, Interlaken, Switzerland 1987, pp. 363–378Google Scholar
  120. (120).
    Steinbichler, H., “Verfahren and Vorrichtung zur Bestimmung der Absolutkoordinaten eines Objektes,” German Patent 4134546Google Scholar
  121. (121).
    Nadeborn, W., Andrä, P, and Osten, W., „A robust procedure for absolute phase measurement,“ Opt. Lasers in Eng. 24 (1996), pp. 245–260ADSCrossRefGoogle Scholar
  122. (122).
    Tiziani, H.: Optische Verfahren zur Abstands-and Topografiebestimmung. Informationstechnik 1 (1991), 5–14Google Scholar
  123. (123).
    Pfeifer, T.; Thiel, J.: Absolutinterferometrie mit durchstimmbaren Halbleiterlasern, Technisches Messen 60(1993)5, 185–191Google Scholar
  124. (124).
    de Groot, P.J.: Extending the unambiguous range of two-color interferometers. AppI. Opt. 33(1994)25, 5948–5953Google Scholar
  125. (125).
    Takeda, M.; Yamamoto, H.: Fourier-transform speckle profilometry: three-dimensional shape measurement of diffuse objects with large height steps and/or spatially isolated surfaces. AppI. Opt. 33 (1994), 7829–7837ADSGoogle Scholar
  126. (126).
    Zou, Y.; Pedrini, G.; Tiziani, H.: Surface contouring in a video frame by changing the wavelength of a diode laser. Opt. Eng. 35(1996)4, 1074–1079Google Scholar
  127. (127).
    Kuwamura, S.; Yamaguchi, I.: Wavelength scanning profilometry for real-time surface shape measurement. Appl. Opt. 36(1997)19, 4473–4482Google Scholar
  128. (128).
    Huntley, J.M.; Saldner, H.: Temporal phase-unwrapping algorithm for automated interferogram analysis. Appl. Opt. 32(1993)17, 3047–3052Google Scholar
  129. (129).
    Huntley, J.M.; Saldner, H.: Shape measurement by temporal phase unwrapping and spatial light modulator-based fringe projector. Proc. SPIE. Vol. 3100 (1997), 185–192ADSCrossRefGoogle Scholar
  130. (130).
    Osten, W., and Jüptner, W., „Measurement of displacement vector fields of extended objects,“ Opt. Lasers in Eng. 24 (1996), pp. 261–285ADSCrossRefGoogle Scholar
  131. (131).
    Pryputniewicz, R. J., „Experiment and FEM modeling,“ In: W. Jüptner and W. Osten (Eds.): Fringe-93, Proc, of the 2nd Intern. Workshop on Automatic Processing of Fringe Patterns, ” Bremen 1993, Akademie Verlag Berlin 1993, 257–275Google Scholar
  132. (132).
    Abramson, N., „The holo-diagram: a practical device fo making and evaluating holograms,“ Appl. Opt. 8 (1969), 1235–1240Google Scholar
  133. (133).
    Abramson, N., „ Sandwich hologram interferometry. 4. Holographic studies of two milling machines, “ Appl. Opt. 18 (1977), 2521Google Scholar
  134. (134).
    Birnbaum, G.; Vest, C. M., „Holographic nondestructive evaluation: status and future,“ Int. Adv. in Nondestr. Test 9 (1983), 257–282Google Scholar
  135. (135).
    Sollid, J.E., and Stetson, K. A., „Strains from holographic data,“ Exp. Mech. 18 (1978), 208–216CrossRefGoogle Scholar
  136. (136).
    Stoer, J., „Einführung in die numerische Mathematik l,“ Springer Verlag Berlin, Heidelberg, New York 1972Google Scholar
  137. (137).
    Osten, W., „Theory and practice in optimization of holographic interferometers,“ Proc. SPIE VOL. 473 (1988), 52–55Google Scholar
  138. (138).
    Seebacher, S.; Osten, W., and Jüptner, W., „3D-Deformation analysis of microcompor.ents using digital holography,“ Proc. SPIE Vol. 3098 (1997), pp. 382–391ADSCrossRefGoogle Scholar
  139. (139).
    Osten, W, and Häusler, F., „Zur Optimierung holografischer Interferometer,“ Preprint P-Mech-08/81Google Scholar
  140. (140).
    Tiziani, H., „Optical techniques for shape measurement, In: W. Jüptner and W. Osten (Eds.): “ Fringe-93,” Proc, of the 2nd Intern. Workshop on Automatic Processing of Fringe Patterns, Bremen 1993, Akademie Verlag Berlin 1993, pp. 165–174Google Scholar
  141. (141).
    Krattenthaler, W., Mayer, K.J., and Duwe, H.P., „3D-surface measurement with coded light approach,“ In: Osten’. Arbeitsgem, Mustererkennung, Proc. ()AGM 12(1993), 103–114Google Scholar
  142. (142).
    Donges, A.; Noll, R.: Lasermeßtechnik, Hüthig Verlag Heidelberg 1993Google Scholar
  143. (143).
    Nadeborn, W., Andrä, P., and Osten, W., “Model based identification of system parameters in optical shape measurement,” In: W. Jüptner and W. Osten (Eds.): “ Fringe-93,” Proc. of the 2nd Intern. Workshop on Automatic Processing of Fringe Patterns, “ Bremen 1993, Akademie Verlag Berlin 1993, 214–222Google Scholar
  144. (144).
    Tsai, R. Y., “A versatile camera calibration technique for high-accuracy 3-D machine vision metrology using off-the-shelf TV cameras and lenses, ” IEEE J. Robot. Automat. RA-3(4), pp. 323–344, 1987Google Scholar
  145. (145).
    Peeck, A.: Bestimmung von Abweichungen nach Maß, Form und Lage mit Hilfe der holografischen Interferometrie. Dissertation, Technische Univ. Hannover 1974Google Scholar
  146. (146).
    Wernicke, G.; Mente, L.; Osten, W.: Application of mismatch techniques in holographic interferometry. EAN 1982, Karlovy Vary, Conf, Proc. Vol. III, 31–38Google Scholar
  147. (147).
    Pfeifer, T.; Mischo, H.; Koch, S.; Evertz, J.: Coded speckleinterferometrical formtesting. Proc. Fringe-97, Akademie Verlag Berlin 1997, pp. 171–178Google Scholar
  148. (148).
    Schnars, U.: Direct phase determination in hologram interferometry with use of digitally recorded holograms. J.O.S.A A 11(1994)7, pp. 2011–2015Google Scholar
  149. (149).
    Kreis, T., Jüptner, W., and geldmacher, J., „Principles of digital holographic interferometry,“ Proc. SPIE Vol. 3478 (1998), 45–54ADSCrossRefGoogle Scholar
  150. (150).
    Pryputniewicz, R.J., and Stetson, K. A., “Determination of sensitivity vectors in hologram interferometry from two known rotations of the object,” Appl,Opt. 18(1980)13, 2201–2205Google Scholar
  151. (151).
    Vogel, D., V. Großer, W. Osten, J. Vogel and R. Höfling, “Holographic 3D-measurement technique based on a digital image processing system. Proc. Fringe-89, Akademie Verlag Berlin 1989, pp. 33–41Google Scholar
  152. (152).
    Schreiber, W., L. Wenke and W. Osten, “ Bestimmung von Verschiebungsvektoren mittels Größen,” Optica Acta 28(1981)9, 1163–1167Google Scholar
  153. (153).
    Kohler, H. “ Interferometric instead of geometric measurement of object points in holographic interferometric deformation analysis,” Optica Acta 29(1982)3, 275–280Google Scholar
  154. (154).
    Nobis, D., and Vest, C. M., “Statistical analysis of errors in holographic interferometry,” Appl.Opt. 17 (1987), 2198–2204ADSCrossRefGoogle Scholar
  155. (155).
    W. Osten, “Some considerations on the statistical error analysis in holographic interferometry with application to an optimized interferometer,” Optica Acta 32(1985)7, 827–838Google Scholar
  156. (156).
    Ek, L., and Biedermann, K. “Analysis of a system for hologram interferometry with a continuously scanning reconstruction beam,” Appl.Opt. 17 (1977), 2535–2542ADSCrossRefGoogle Scholar
  157. (157).
    Dhir, S.K., and Sikora, J.P.,“ An improved method for obtaining the general displacement field from a holographic interferogram,” Exp. Mech. 12 (1972), 323–327CrossRefGoogle Scholar
  158. (158).
    Andrä, P.; Beeck, A.; Jüptner, W.; Nadeborn, W.; and Osten, W., „Combination of optically measured coordinates and displacements for quantitative investigation of complex objects,“ Proc. SPIE Vol. 2782(1996), pp.Google Scholar
  159. (159).
    Jüptner, W.; Osten, W.; Andrä, P.; and Nadeborn, W., „Nondestructive quantitative 3D characterization of a car brake,“ Proc. SPIE Vol. 2861 (1996), 170–179ADSCrossRefGoogle Scholar
  160. (160).
    Birnbaum, G, and Vest, C. M., “Holographic nondestructive evaluation: status and future,” Int. Adv. in Nondestr. Test 9 (1983), pp. 257–282Google Scholar
  161. (161).
    Osten, W., Saedler, J., and Wilhelmi, W., „Fast evaluation of fringe patterns with a digital image processing system,“ (in German), Laser Magazin 2 (1987), pp. 58–66Google Scholar
  162. (162).
    Osten, W., Jüptner, W., and Mieth, U, „Knowledge assisted evaluation of fringe patterns for automatic fault detection,“ Proc. SPIE Vol. 2004 (1993), pp. 256–268ADSCrossRefGoogle Scholar
  163. (163).
    Jüptner, W., Kreis, T., Mieth, U., and Osten, W., „Application of neural networks and knowledge based systems for automatic identification of fault indicating fringe patterns,“ Proc. SPIE Interferometry”94 Vol. 2342 (1994), pp. 16–26ADSGoogle Scholar
  164. (164).
    Kreis, T., Jüptner, W., and Biedermann, R., „Neural network approach to nondestructive testing,“ AppI. Opt. 34(1995)8, pp. 1407–1415Google Scholar
  165. (165).
    Bischof,Th., and Jüptner,W., „Determination of the adhesive load by holographic interferometry using the result of FEM-calculations,“ Proc. SPIE Vol. 1508(1991), pp. 90–95Google Scholar
  166. (167).
    Osten, W.; Elandaloussi, F., and Jüptner, W., „Recognition by synthesis–a new approach for the recognition of material faults in HNDE,“ Proc. SPIE Vol. 2861 (1996), 220–224ADSCrossRefGoogle Scholar
  167. (168).
    Mieth, U.; Osten, W.; and Jüptner, W., „Numerical investigations on the appearance of material flaws in holographic interference patterns,“ Proc. International Symposium on Laser Application in Precision Measurement, Balatonfüred 1996, Akademie Verlag Berlin 1996, 218–225Google Scholar
  168. (169).
    Jüptner, W., and Kreis, Th., „Holographic NDT and visual inspection in production line application,“ Proc. SPIE 604 (1986), pp. 30–36CrossRefGoogle Scholar
  169. (170).
    Jüptner, W., „Nondestructive Testing with Interferometry,“ Proc. ”Fringe - 93“ Akademie Verlag, Berlin, 1993, pp. 315–324Google Scholar
  170. (171).
    Hung, Y.,Y,: „Displacement and strain measurement,“ In: R,K. Erf (Ed.): Speckle Metrology. Academic Press, New York 1987, pp. 51–71Google Scholar
  171. (172).
    Haykin, S., Neural Networks: A Comprehensive Foundation, MacMillan, New York, 1994MATHGoogle Scholar
  172. (173).
    Osten, W.; Elandaloussi, F., Jüptner, W.: Recognition by synthesis–a new approach for the recognition of material faults in HNDE. Proc. SPIE Vol. 2861 (1996), 220–224ADSCrossRefGoogle Scholar
  173. (174).
    Osten, W.; Elandaloussi; F.; Mieth, U.: Software brings automation to fringe-pattern processing. EuroPhotonics, February/March 1998, pp 34–35Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • W. Osten
    • 1
  1. 1.BIASBremenGermany

Personalised recommendations