Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 403))

  • 282 Accesses

Abstract

Interference is one of the most fundamental phenomena of the light as an electromagnetic wave. Huygens postulated that one can define the intensity in any given point anywhere in space by superposing the elementary wave coming from a surface with known electromagnetic excitation. The Huygens principle involves the interference otherwise only the intensities would be summed up.

The phenomena of interference is a result of the linearity of the wave equation. This equation is similar for all kinds of waves. It is a differential equation which contains at least a term with the second derivative after space and one after time, respectively. With any found solution the sum of the solutions is a solution, too. This consequence is the basis for most of the coherent-optical metrology methods.

Holography is based on the interference of an object wave and an reference wave forming the hologram. The reconstruction of the hologram results in the original object wave which can interfere with the wave from a changed object state. The interference pattern is a measure for the displacement of surface points: the principle of holographic interferometry in all kind and of shearography. In Speckle photography the recorded Speckle fields before and after displacement interfere forming Young’s fringes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geerfhsen, Chr., v.Vogel, H.: Physik, Springer Verlag 1997

    Google Scholar 

  2. Gabor, D.: Microscopy by reconstructed wave fronts, Proc. Royal Soc. A, 197, (1949), p. 454–487

    Article  ADS  MATH  Google Scholar 

  3. Leith, E.N.; Upathnics, J.: Wavefront reconstruction with diffused illumination and three-dimensional objects, Journ. Opt. Soc. Amer., 54 (1965)

    Google Scholar 

  4. Powell, R.L.; Stetson, K.A.: Interferometric vibration analysis by wave front reconstruction, Journ. Opt. Soc. Amer., 55, 1965, p. 1593–1608

    Article  ADS  Google Scholar 

  5. Einstein, A.: Zur Quantentheorie der Strahlung (About the quantum theory of radiation), Phys. Z. 18 (1917), S. 121–128

    Google Scholar 

  6. Ladenburg, R.; Kopfermann, H.: Experimenteller Nachweis der negativen Dispersion (Experimental proof of the negative dispersion), Z. Phys. Chemie Abt. A 139 (1928), S. 375–385

    Google Scholar 

  7. Bloembergen, N.: Proposal for a new type solid state maser, Phys. Rev. 104, 2 (1956), p. 324–327

    Article  ADS  MathSciNet  Google Scholar 

  8. Maiman, T. H.: Stimulated optical radiation in ruby, Nature 187 (1960), p. 493f

    Article  ADS  Google Scholar 

  9. Born, M.; Wolf, E.: Principle of Optics, Pergamon Press, Oxford, London, Edinburgh 1980

    Google Scholar 

  10. Gabor, D.: Microscopy by reconstructed wave fronts, Proc. Royal Soc. A, 197, (1949), p. 454–487

    Article  ADS  MATH  Google Scholar 

  11. Jüptner, W.: Holographic techniques, NATO ASI Series F, Vol. 43, Sensors and Sensory Systems, Springer-Verlag Berlin Heidelberg 1988, p. 279–294

    Google Scholar 

  12. Mandel L.; Wolf, E.: Optical Coherence and Quantum Optics, Cambridge University Press, New York 1995

    Book  Google Scholar 

  13. Wernicke, G.; Osten, W.: Holografische Interferometrie (Holographic Interferometry), Physik-Verlag, Weinheim 1982

    Google Scholar 

  14. Denisyuk, Y.N.: Fundamentals of Holography, Mir Publishers, Moscow 1978

    Google Scholar 

  15. Jüptner, W., Kreitlow, H.: Holografische Aufnahme von nicht-schwingungsgeschützten Objekten (Holographic recording of non-vibrationisolated objects), Poc. Laser 77, IPC, Guildford, GB, 1977, p. 420–429

    Google Scholar 

  16. Hung, Y.Y.: Shearography: a new optical method for strain measurement and nondestructive testing, Optical Engineering 21, 1982, p. 391–395

    Article  Google Scholar 

  17. Ostrowski, J.I.: Holografie - Grundlagen, Experimente und Anwendungen, BSB B.G. Teubner Verlagsgesellschaft, Leipzig 1987

    Book  Google Scholar 

  18. Powell, R.L.; Stetson, K.A.: Interferometric vibration analysis by wave front reconstruction, Journ. Opt. Soc. Amer., 55, 1965, p. 1593–1608

    Article  ADS  Google Scholar 

  19. Abramson, N.: The holo-diagram: A practical device for making and evaluating holograms, Appl. Opt., 8, 1969, p. 1235–1240

    ADS  Google Scholar 

  20. Jüptner, W.P.O.; Kreis, Th.: Holographic NDT and Visual Inspection in Production Line Applications. SPIE Proc. 604, Los Angeles 1986

    Google Scholar 

  21. Mieth, U.: Musterbasierte Erkennung von Materialfehlern mit holografischen Interferogrammen (Pattern based recognition of material defects by means of holographic interferograms), PhD thesis, University Bremen, Bremen 1998, to be published

    Google Scholar 

  22. Jüptner, W.: Nondestructive Testing with Interferometry, Proc. Fringe ‘83, Akademie Verlag GmbH, Berlin 1993, p. 315–324

    Google Scholar 

  23. Kreis, Th.: Holographic Interferometry, Akademie Verlag, Berlin 1996

    Google Scholar 

  24. Osten, W.: Digitale Verarbeitung und Auswertung von lnterferenzbildern (Digital processing and evaluation of fringe pattern), Akademie Verlag GmbH, Berlin 1991

    Google Scholar 

  25. Jüptner, W.; Stadler, H.-J.; Kleberger, W.A.: Investigations in Non-Destructive Testing of GRP Tubes and Project Management of the Experimental Studies. BMVg Report Nr. T/RF52/RF520/42016, Bonn 1977 ( German )

    Google Scholar 

  26. Aswendt, P.; Höfling, R.: Interferometrische Dehnungsmessung - Aufbau und Anwendung eines DSPI Systems (Interferometric Strain Measurement - Set-up and Application of a DSPI System. LASER 93, Munich 1993

    Google Scholar 

  27. Jüptner, W.: Defect Quantification by a Hybrid Finite Element Method. Proc. 9th Int. UFEM Symposium, Worcester 1987

    Google Scholar 

  28. Steinbichler, H.: Prüfung von GFK-Hochdruckrohren mittels Holografie (Testing of GRP high pressure tubes by means of holography). BMVg Report Nr. T/RF52/RF520/42016/03 Bonn 1976

    Google Scholar 

  29. Höfling, R. Aswendt, P.; The influence of defects on the deformation behavior of GRP materials calculated by a specialized FEM program. Private communication on the BMFT project HOLOMETEC

    Google Scholar 

  30. Jüptner, W.; Kreis, Th.; Mieth, U.; Osten, W.: Application of Neural Networks and Knowledge Based Systems for Automatic Identification of Fault Indicating Fringe Patterns, Proc. SPIE, Vol. 2342, 1994, p. 16–26

    Article  ADS  Google Scholar 

  31. Irvin, G.R.; McClintock: F. ASTM, STP 381 (1965)

    Google Scholar 

  32. Kerkhoff, F.: Einführung in die Bruchmechanik ( Introduction into fracture mechanics ), Freiburg 1969

    Google Scholar 

  33. Meyer, LW., Jüptner, W.; Steffens, H.-D.: Fracture Toughness Investigations Using Holographic Interferomerry. Proc. Laser 75, München, 1975

    Google Scholar 

  34. A. Felske, “Holographic analysis of oscillations in squealing disk brakes,” Proc. SPIE, Vol. 136, 148–155 (1977)

    Article  Google Scholar 

  35. Z. Füzessy, “Applications of Double-Pulse Holography for the Investigations of Machines and Systems,” Application of Metrological Methods in Machines and Systems, G. Frankowski, N. Abramson, Z. Füzessy, 75–108, Akademie Verlag Berlin (1991)

    Google Scholar 

  36. Pryputniewicz, R.; Grabbe, D.: Developments in micromechanics through analysis and experimentation. Proc. 10th Int. UFEM Symp., Worcester, 1991

    Google Scholar 

  37. R. Höfling, “Combined theoretical and experimental methods in materials mechanics,” FRINGE ‘87 Automatic Processing of Fringe Patterns, ed. W. Jüptner, W. Osten, 379–386, Akademie Verlag Berlin (1997)

    Google Scholar 

  38. Raimann, G.: “Eumig HT-10: Ein TV-Speckle Interferometer und seine praktischen Anwendungen (Eumig HAT-10: A TV-Speckle Interferometer and its practical applications)”, Herbstschule ‘77, Hannover 1977, p. 147

    Google Scholar 

  39. Pedersen, H.M.; Lokberg, O.J.; Frrre, B.M: “Holographic Vibration Measurement Using a TV Speckle Interferometer with Silicon Target Vidicon”, Optics Communication, Vol.12, No. 4, p. 421–426

    Google Scholar 

  40. Kujawinska, M.; Pryputniewicz, R.J.: “Micromeasurements: a Challenge for Photomechanics”, In: Proc. SPIE, Vol. 2782 (1996), p. 15–24

    Google Scholar 

  41. Stetson, K.A.:“Theory and Application of Electronic Holography”, Proc. Of the SEM Meeting Hologram Interferometry and Speckle Metrology, SEM, Bethel, 1990, p. 295–300

    Google Scholar 

  42. Pryputniewicz, R.J.; Grabbe, D.G.: “Developments in micromechanics through analysis and experimentation”. In: Proc. 11th Int. Invitational UCEM Symp. 1993, Soc. Exp. Mech., Bethel, CT, p. 506–532

    Google Scholar 

  43. Höfling, R.; Aswendt, P.; Liebig, V.; Bruckner, S.: “Synthesis of Experiment and Simulation in Speckle Interferometry: a Medical Application”, In: Simulation and Experiment in Laser Metrology, eds.: W.Jüptner, W.Osten, Akademie-Verlag (1996), p. 261–268

    Google Scholar 

  44. Harris, C.M.: “Shock and Vibration Handbook Voll ”, McGraw Hill, 1961

    Google Scholar 

  45. Furlon, C.; Pryputniewicz, R.J.: “Hybrid, experimental and computational, investigation of mechanical components”, SPIE Vol. 2861, 1996, p. 13–25

    Article  ADS  Google Scholar 

  46. Hung, Y.Y.: “Shearography: anew optical method for strain measurement and nondestructive testing”, Opt. Eng. 21 (1982), p. 391–395

    Google Scholar 

  47. Kreis, Th.: “Holographic Interferometry”, Akademie Verlag, Berlin

    Google Scholar 

  48. Kreis, Th.: “Shearography”, Anwenderforum

    Google Scholar 

  49. Ettemeyer, A.: „Shearografie–ein optisches Verfahren zur zerstörungsfreien Werkstoffprüfung (Shearography–an optical method for nondestructive testing)“, tm Technisches Messen58 (1991) 6, p. 247–252

    Google Scholar 

  50. Klumpp, P.A.: “Delaminationsuntersuchungen an Carbonfaser/EpoxyVerbunden mit kohärent-optischen Verfahren (Investigation of delaminations in carbon-fiber/Epoxy-resin compounds by means of coherent optical methods)”, PhD thesis, University of Karlsruhe, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Jüptner, W. (2000). Interferometric Methods. In: Laermann, KH. (eds) Optical Methods in Experimental Solid Mechanics. International Centre for Mechanical Sciences, vol 403. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2586-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2586-1_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83325-4

  • Online ISBN: 978-3-7091-2586-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics