Interferometric Methods

  • W. Jüptner
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 403)


Interference is one of the most fundamental phenomena of the light as an electromagnetic wave. Huygens postulated that one can define the intensity in any given point anywhere in space by superposing the elementary wave coming from a surface with known electromagnetic excitation. The Huygens principle involves the interference otherwise only the intensities would be summed up.

The phenomena of interference is a result of the linearity of the wave equation. This equation is similar for all kinds of waves. It is a differential equation which contains at least a term with the second derivative after space and one after time, respectively. With any found solution the sum of the solutions is a solution, too. This consequence is the basis for most of the coherent-optical metrology methods.

Holography is based on the interference of an object wave and an reference wave forming the hologram. The reconstruction of the hologram results in the original object wave which can interfere with the wave from a changed object state. The interference pattern is a measure for the displacement of surface points: the principle of holographic interferometry in all kind and of shearography. In Speckle photography the recorded Speckle fields before and after displacement interfere forming Young’s fringes.


Heat Affected Zone Fringe Pattern Reference Wave Holographic Interferometry Weld Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geerfhsen, Chr., v.Vogel, H.: Physik, Springer Verlag 1997Google Scholar
  2. 2.
    Gabor, D.: Microscopy by reconstructed wave fronts, Proc. Royal Soc. A, 197, (1949), p. 454–487ADSCrossRefMATHGoogle Scholar
  3. 3.
    Leith, E.N.; Upathnics, J.: Wavefront reconstruction with diffused illumination and three-dimensional objects, Journ. Opt. Soc. Amer., 54 (1965)Google Scholar
  4. 4.
    Powell, R.L.; Stetson, K.A.: Interferometric vibration analysis by wave front reconstruction, Journ. Opt. Soc. Amer., 55, 1965, p. 1593–1608ADSCrossRefGoogle Scholar
  5. 5.
    Einstein, A.: Zur Quantentheorie der Strahlung (About the quantum theory of radiation), Phys. Z. 18 (1917), S. 121–128Google Scholar
  6. 6.
    Ladenburg, R.; Kopfermann, H.: Experimenteller Nachweis der negativen Dispersion (Experimental proof of the negative dispersion), Z. Phys. Chemie Abt. A 139 (1928), S. 375–385Google Scholar
  7. 7.
    Bloembergen, N.: Proposal for a new type solid state maser, Phys. Rev. 104, 2 (1956), p. 324–327ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Maiman, T. H.: Stimulated optical radiation in ruby, Nature 187 (1960), p. 493fADSCrossRefGoogle Scholar
  9. 9.
    Born, M.; Wolf, E.: Principle of Optics, Pergamon Press, Oxford, London, Edinburgh 1980Google Scholar
  10. 1.
    Gabor, D.: Microscopy by reconstructed wave fronts, Proc. Royal Soc. A, 197, (1949), p. 454–487ADSCrossRefMATHGoogle Scholar
  11. 2.
    Jüptner, W.: Holographic techniques, NATO ASI Series F, Vol. 43, Sensors and Sensory Systems, Springer-Verlag Berlin Heidelberg 1988, p. 279–294Google Scholar
  12. 3.
    Mandel L.; Wolf, E.: Optical Coherence and Quantum Optics, Cambridge University Press, New York 1995CrossRefGoogle Scholar
  13. 4.
    Wernicke, G.; Osten, W.: Holografische Interferometrie (Holographic Interferometry), Physik-Verlag, Weinheim 1982Google Scholar
  14. 5.
    Denisyuk, Y.N.: Fundamentals of Holography, Mir Publishers, Moscow 1978Google Scholar
  15. 6.
    Jüptner, W., Kreitlow, H.: Holografische Aufnahme von nicht-schwingungsgeschützten Objekten (Holographic recording of non-vibrationisolated objects), Poc. Laser 77, IPC, Guildford, GB, 1977, p. 420–429Google Scholar
  16. 7.
    Hung, Y.Y.: Shearography: a new optical method for strain measurement and nondestructive testing, Optical Engineering 21, 1982, p. 391–395CrossRefGoogle Scholar
  17. 8.
    Ostrowski, J.I.: Holografie - Grundlagen, Experimente und Anwendungen, BSB B.G. Teubner Verlagsgesellschaft, Leipzig 1987CrossRefGoogle Scholar
  18. 9.
    Powell, R.L.; Stetson, K.A.: Interferometric vibration analysis by wave front reconstruction, Journ. Opt. Soc. Amer., 55, 1965, p. 1593–1608ADSCrossRefGoogle Scholar
  19. 10.
    Abramson, N.: The holo-diagram: A practical device for making and evaluating holograms, Appl. Opt., 8, 1969, p. 1235–1240ADSGoogle Scholar
  20. 11.
    Jüptner, W.P.O.; Kreis, Th.: Holographic NDT and Visual Inspection in Production Line Applications. SPIE Proc. 604, Los Angeles 1986Google Scholar
  21. 12.
    Mieth, U.: Musterbasierte Erkennung von Materialfehlern mit holografischen Interferogrammen (Pattern based recognition of material defects by means of holographic interferograms), PhD thesis, University Bremen, Bremen 1998, to be publishedGoogle Scholar
  22. 13.
    Jüptner, W.: Nondestructive Testing with Interferometry, Proc. Fringe ‘83, Akademie Verlag GmbH, Berlin 1993, p. 315–324Google Scholar
  23. 14.
    Kreis, Th.: Holographic Interferometry, Akademie Verlag, Berlin 1996Google Scholar
  24. 15.
    Osten, W.: Digitale Verarbeitung und Auswertung von lnterferenzbildern (Digital processing and evaluation of fringe pattern), Akademie Verlag GmbH, Berlin 1991Google Scholar
  25. 16.
    Jüptner, W.; Stadler, H.-J.; Kleberger, W.A.: Investigations in Non-Destructive Testing of GRP Tubes and Project Management of the Experimental Studies. BMVg Report Nr. T/RF52/RF520/42016, Bonn 1977 ( German )Google Scholar
  26. 17.
    Aswendt, P.; Höfling, R.: Interferometrische Dehnungsmessung - Aufbau und Anwendung eines DSPI Systems (Interferometric Strain Measurement - Set-up and Application of a DSPI System. LASER 93, Munich 1993Google Scholar
  27. 18.
    Jüptner, W.: Defect Quantification by a Hybrid Finite Element Method. Proc. 9th Int. UFEM Symposium, Worcester 1987Google Scholar
  28. 19.
    Steinbichler, H.: Prüfung von GFK-Hochdruckrohren mittels Holografie (Testing of GRP high pressure tubes by means of holography). BMVg Report Nr. T/RF52/RF520/42016/03 Bonn 1976Google Scholar
  29. 20.
    Höfling, R. Aswendt, P.; The influence of defects on the deformation behavior of GRP materials calculated by a specialized FEM program. Private communication on the BMFT project HOLOMETECGoogle Scholar
  30. 21.
    Jüptner, W.; Kreis, Th.; Mieth, U.; Osten, W.: Application of Neural Networks and Knowledge Based Systems for Automatic Identification of Fault Indicating Fringe Patterns, Proc. SPIE, Vol. 2342, 1994, p. 16–26ADSCrossRefGoogle Scholar
  31. 22.
    Irvin, G.R.; McClintock: F. ASTM, STP 381 (1965)Google Scholar
  32. 23.
    Kerkhoff, F.: Einführung in die Bruchmechanik ( Introduction into fracture mechanics ), Freiburg 1969Google Scholar
  33. 24.
    Meyer, LW., Jüptner, W.; Steffens, H.-D.: Fracture Toughness Investigations Using Holographic Interferomerry. Proc. Laser 75, München, 1975Google Scholar
  34. 25.
    A. Felske, “Holographic analysis of oscillations in squealing disk brakes,” Proc. SPIE, Vol. 136, 148–155 (1977)CrossRefGoogle Scholar
  35. 26.
    Z. Füzessy, “Applications of Double-Pulse Holography for the Investigations of Machines and Systems,” Application of Metrological Methods in Machines and Systems, G. Frankowski, N. Abramson, Z. Füzessy, 75–108, Akademie Verlag Berlin (1991)Google Scholar
  36. 27.
    Pryputniewicz, R.; Grabbe, D.: Developments in micromechanics through analysis and experimentation. Proc. 10th Int. UFEM Symp., Worcester, 1991Google Scholar
  37. 28.
    R. Höfling, “Combined theoretical and experimental methods in materials mechanics,” FRINGE ‘87 Automatic Processing of Fringe Patterns, ed. W. Jüptner, W. Osten, 379–386, Akademie Verlag Berlin (1997)Google Scholar
  38. 1.
    Raimann, G.: “Eumig HT-10: Ein TV-Speckle Interferometer und seine praktischen Anwendungen (Eumig HAT-10: A TV-Speckle Interferometer and its practical applications)”, Herbstschule ‘77, Hannover 1977, p. 147Google Scholar
  39. 2.
    Pedersen, H.M.; Lokberg, O.J.; Frrre, B.M: “Holographic Vibration Measurement Using a TV Speckle Interferometer with Silicon Target Vidicon”, Optics Communication, Vol.12, No. 4, p. 421–426Google Scholar
  40. 3.
    Kujawinska, M.; Pryputniewicz, R.J.: “Micromeasurements: a Challenge for Photomechanics”, In: Proc. SPIE, Vol. 2782 (1996), p. 15–24Google Scholar
  41. 4.
    Stetson, K.A.:“Theory and Application of Electronic Holography”, Proc. Of the SEM Meeting Hologram Interferometry and Speckle Metrology, SEM, Bethel, 1990, p. 295–300Google Scholar
  42. 5.
    Pryputniewicz, R.J.; Grabbe, D.G.: “Developments in micromechanics through analysis and experimentation”. In: Proc. 11th Int. Invitational UCEM Symp. 1993, Soc. Exp. Mech., Bethel, CT, p. 506–532Google Scholar
  43. 6.
    Höfling, R.; Aswendt, P.; Liebig, V.; Bruckner, S.: “Synthesis of Experiment and Simulation in Speckle Interferometry: a Medical Application”, In: Simulation and Experiment in Laser Metrology, eds.: W.Jüptner, W.Osten, Akademie-Verlag (1996), p. 261–268Google Scholar
  44. 7.
    Harris, C.M.: “Shock and Vibration Handbook Voll ”, McGraw Hill, 1961Google Scholar
  45. 8.
    Furlon, C.; Pryputniewicz, R.J.: “Hybrid, experimental and computational, investigation of mechanical components”, SPIE Vol. 2861, 1996, p. 13–25ADSCrossRefGoogle Scholar
  46. 1.
    Hung, Y.Y.: “Shearography: anew optical method for strain measurement and nondestructive testing”, Opt. Eng. 21 (1982), p. 391–395Google Scholar
  47. 2.
    Kreis, Th.: “Holographic Interferometry”, Akademie Verlag, BerlinGoogle Scholar
  48. 3.
    Kreis, Th.: “Shearography”, AnwenderforumGoogle Scholar
  49. 4.
    Ettemeyer, A.: „Shearografie–ein optisches Verfahren zur zerstörungsfreien Werkstoffprüfung (Shearography–an optical method for nondestructive testing)“, tm Technisches Messen58 (1991) 6, p. 247–252Google Scholar
  50. 5.
    Klumpp, P.A.: “Delaminationsuntersuchungen an Carbonfaser/EpoxyVerbunden mit kohärent-optischen Verfahren (Investigation of delaminations in carbon-fiber/Epoxy-resin compounds by means of coherent optical methods)”, PhD thesis, University of Karlsruhe, 1990Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • W. Jüptner
    • 1
  1. 1.BIASBremenGermany

Personalised recommendations