Skip to main content

Automated In-Plane Moiré Techniques and Grating Interferometry

  • Conference paper
Optical Methods in Experimental Solid Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 403))

  • 290 Accesses

Abstract

Several problems in experimental solid mechanics and material engineering require determination of in-plane displacement / strain fields. It is especially true if we consider flat samples under simple loading arrangement. The effective experimental tools working under these assumptions are in-plane grid / moiré technique and high sensitivity grating (moiré) interferometry. Below the principles of both techniques and modern solutions of grating / grid technology and design of moiré and interferometric systems are presented. As the fringe patterns obtained at the output of the systems require automatic analysis, the overview of the phase methods of fringe pattern analysis especially suited for various opto-mechanical configuration of the systems are described. Also the interaction of the results with FEM is presented, while referring to various concepts of hybrid experimental-numerical analysis. The result advances in measurement technology expand significantly the applications of the in-plane moiré and grating interferometry techniques. The numerous examples refer to the most challenging applications including local material constant determination, micromeasurements, residual stress analysis and monitoring of various engineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patorski K.: The Handbook of the Moiré Technique, Elsevier, Oxford, (1993)

    Google Scholar 

  2. Cloud, G.: Optical Methods of Engineering Analysis, Cambridge Univ. Press, (1995)

    Google Scholar 

  3. Kobayashi, A.S., ed: Handbook of Experimental Mechanics, Prentice Hall, Inc. (1987)

    Google Scholar 

  4. Theocaris, P.S.: Moiré Fringes in Strain Analysis, Pergamon Press, Oxford, (1969)

    Google Scholar 

  5. Durelli, A.J. and V.J. Parks: Moiré Analysis of Strain, Prentice-Hall, Englewood Cliffs, New Jersey, (1970)

    Google Scholar 

  6. Bach, C. and R. Bauman: Elastikität and Festigkeit, Springer, Berlin, (1922)

    Google Scholar 

  7. Bell, J.F.: Diffraction grating strain gauge, Proc. SEM, 17(2), Bethel, (1960)

    Google Scholar 

  8. Backes, P.G. and W.M. Stevenson: High accuracy image centroid position determination with matrix sensors: An experimental comparison of methods, Proc. of Fifth Int. Congress on Applications of Lasers and Elektro-Optics, Arlington, (1986)

    Google Scholar 

  9. Van der Heijden, F.: Image based measurement systems, J.Wiley and Sons Ltd, Chichester and New York, (1994)

    Google Scholar 

  10. Born, A. and E. Wolf: Principles of Optics, New York, Oxford, Pergamon Press, (1959)

    Google Scholar 

  11. Sciammarella, C.A.: Basic optical law in the interpretation of rhoiré patterns applied to the analysis of strains–Part I., Exp. Mechanics, 5, (1965), 154–160

    Article  Google Scholar 

  12. McKelvie, J.: Moiré strain analysis: an introduction, review and critique, including related techniques and future potentials, The Journal of Strain Analysis, 33, (1998), 137–152

    Article  Google Scholar 

  13. Guild, J.: The interference System of Crosed Diffraction Gratings: Theory of Moiré Fringes, Clarendon Press, Oxford, (1956)

    Google Scholar 

  14. Weller, R. and B.M. Shepard: Displacement measurement by mechanical interferometry, Proc. Soc. Exp. Stress Analysis, 6 (1), (1948), 35–38

    Google Scholar 

  15. Weissman, E.M. and D. Post: Moiré intrferometry near the theoretical limit, Applied Opt., 21 (9), (1982), 1621–1623

    Article  ADS  Google Scholar 

  16. Sevenhuisen, P.J.: Grid methods - a new future, in Proc. of SEM Spring Conf. on Experimental Mechanics, (1989), 445–450

    Google Scholar 

  17. Post, D. and B. Han, P.Ifju: High Sensitivity Moiré Interferometry, Springer-Verlag, Berlin, (1994)

    Book  Google Scholar 

  18. Naumann, J.: Grundlagen and Anwendung des In: plane-Moiréverfahrens in der experimentallen festkörpermechanik, Mechanik/Bruchmechanik, 110, VDI Verlag, (1992)

    Google Scholar 

  19. Sciammarella, C.A.: Moiré fringe multiplication by means of filtering and wave front reconstruction process, Exp. Mech., 9, (1969), 179–185

    Article  Google Scholar 

  20. Post, D.: Moire fringe multiplication with a nonsymmetrical, doubly blazed reference grating, Appl. Optics, 10, (1971), 901–907

    ADS  Google Scholar 

  21. Huntley, M.C.: Diffraction gratings, Academic Press, (1982)

    Google Scholar 

  22. Wiliams, D.C. (ed): Optical methods in engineering metrology, Chapman Hall, London, (1993)

    Google Scholar 

  23. Burch, J.M. and C. Forno: A high-sensitivity moiré grid technique for studying deformation in large objects, Opt. Eng., 14, (1975), 175–185

    ADS  Google Scholar 

  24. Forno, C.: Deformation measurement using high resolution moiré photography, Opt. Lasers Eng., 8, (1988), 189–212

    Article  ADS  Google Scholar 

  25. McKelvie, J. and C.A. Walker: A practical multiplied moiré-fringe technique, Exp. Mechanics, 18, (1978), 316–320

    Article  Google Scholar 

  26. Ifju, P. and D. Post: Zero thickness specimen gratings for moiré intrferometry, Exp. Techqs., 15 (2), (1991), 45–47

    Article  Google Scholar 

  27. Kujawinska, M. and J.R. Pryputniewicz: Micromeasurement: a challenge for photomechanics, Proc. SPIE, 2782 (1996), 15–24

    Article  ADS  Google Scholar 

  28. Kearney, A. and C. Forno: High temperature resistant gratings for moiré interferometry, Exp. Techqs. 17 (6), (1993), 9–12

    Article  Google Scholar 

  29. Dally, J.W. and D.T. Read: Electron-beam moiré, Exp. Mechanics, 33, (1993), 270–277

    Article  Google Scholar 

  30. Dally, J.W. and D.T. Read, E.S. Drexler: Transitioning from optical to electronic moiré, Exp. Mechanics, Allison I.M. (ed), Balkema, Rotterdam, (1998), 437–447

    Google Scholar 

  31. Han, B.: Higher sensitivity moiré interferometry for micromechanics studies, Opt. Eng., 31, (1992), 1517–1525

    Article  ADS  Google Scholar 

  32. Yatagai, T.: Intensity based analysis methods In Interferogram Analysis, D.W. Robinson and G.T. Reid (eds), Institute of Physics, Bristol, (1993)

    Google Scholar 

  33. Osten, W. and W. Jüptner: Digital processing of fringe patterns in optical metrology in Optical Measurement Techniques Applications, P.K. Rastogi Artech House, Boston, (1997)

    Google Scholar 

  34. Creath, K: Temporal phase measurement methods, in Interferogram Analysis, D.W.Robinson, G.T.Reid (eds), Institute of Physics, Bristol, (1993)

    Google Scholar 

  35. Kujawinska, M: Spatial phase measurement methods, in Interferogram Analysis, D.W.Robinson, G.T.Reid (eds), Institute of Physics, Bristol, (1993)

    Google Scholar 

  36. Takeda, M. and H. Ina, S. Kobayashi: Fourier transform method of fringe pattern analysis for computer — based topography and intrferometry, J.Opt. S.c. Am., 72, (1982), 156–160

    Article  ADS  Google Scholar 

  37. Bruning, J.H. et al.: Digital wavefront measuring interferometer for testing optical surfaces and lenses, Appl. Opt. 13, (1974), 2693–2703

    ADS  Google Scholar 

  38. Surrel, Y.: Design of algorithms for phase measurements by the use of phase stepping, Appl. Opt., 35, (1996), 51–60

    ADS  Google Scholar 

  39. Stetson, K.A. and W.R. Brohinsky: Electrooptic holography and its application to hologram interferometer, Appl. Opt., 24, (1985), 3632–3637

    ADS  Google Scholar 

  40. Surrel, Y.: Additive noise effect in digital phase detection, Appl. Opt., 36, (1997), 271–276

    ADS  Google Scholar 

  41. Huntley, J.M.: Automated fringe pattern analysis in experimental mechanics: a review, J.Strain Analysis, 33 (1998), 105–125

    Article  Google Scholar 

  42. Kujawiska, M. and J. Wôjciak: Spatial-carrier phase-shifting technique of fringe pattern analysis, Proc. SPIE, 1508, (1991), 61–67

    Article  ADS  Google Scholar 

  43. Creath, K. and J. Schmit: N-point spatial phase measurement technique for nondestructive testing, Opt. Lasers Eng., 24, (1996), 365–379

    Article  Google Scholar 

  44. Pirga, M and M. Kujawinska: Two-directional spatial-carrier phase shifting method for analysis of crossed and closed fringe pattren, Opt. Eng., 34, (1995) 2459–2466

    Article  ADS  Google Scholar 

  45. Burton, D.R. and M.J. Lalor: Multichannel Fourier fringe analysis as and aid to automatic phase unwrapping, Appl. Opt., 33, (1994), 2939–2948

    ADS  Google Scholar 

  46. Osten, W. and W. Nadeborn, P. Andrä: General hierarchical approach in absolute phase measurement, Proc. SPIE, 2860, (1996) 2–13

    Article  ADS  Google Scholar 

  47. Takeda, M: Recent progress in phase-unwrapping techniques, Proc. SPIE, 2782, (1996), 334–343

    Article  ADS  Google Scholar 

  48. Huntley, J.M.: New methods for unwrapping noisy phase maps, Proc.SPIE, 2340, (1994), 110–123

    Article  ADS  Google Scholar 

  49. Bone, D.J: Fourier fringe analysis: the two-dimensional phase unwrapping problem, Appl.Opt., 30, (1991), 3627–3632

    Article  ADS  Google Scholar 

  50. Towers, D.P and T.R. Judge, P.J. Bryanston-Cross: Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI, Opt. Lasers Eng., 14, (1991), 239–281

    Article  Google Scholar 

  51. Ghiglia, D.G. and G.A.Mastin, L.A. Romero: Cellular automata method for phase unwrapping, J.Opt.Soc. Am. A, 4, (1987), 267–280

    Google Scholar 

  52. Servin, M. and R. Rodriguez-Vera, A.J. Moore: A robust cellular processor for phase unwrapping, J.Mod.Opt., 41, (1994), 119–127

    Article  ADS  Google Scholar 

  53. Huntley, J.M. and H. Saldner: Temporal phase unwrapping algorithm for automated interferogram analysis, Appl. Opt. 32, (1993), 3047–3052

    ADS  Google Scholar 

  54. Vrooman, H.A. and A.A. Mass: New image processing algorithms for the analysis of speckle interference patterns, Proc. SPIE, 1163, (1989), 51–61

    Article  ADS  Google Scholar 

  55. Czarnek, R.: High sensitivity modre interferometer with compact achromatic head, Opt. Lasers Eng., 13, (1990), 93–101

    Google Scholar 

  56. Epstein, J.: Moiré interferometry: past achievements and present directions, Opt. Lasers Eng., 12, (1990), 77–79

    Article  Google Scholar 

  57. McKelvie, J. and C.A. Walker, P.M. MacKenzie: A workaday more interferometer: conceptual and design considerations: operation; applications; variations; limitations., Proc. SPIE, 814, (1987), 464–474

    Google Scholar 

  58. McKelvie, J. and K. Patorski: Influence of the slopes of the specimen grating surface on out-of-plane displacements by moiré interferometry, Appl. Opt., 27, (1988), 4603–4605

    ADS  Google Scholar 

  59. Kujawinska, M. and L.Salbut: Recent development in instrumentation of automated grating interferometry“, Optica Applicata, 25, (1995), 211–232

    Google Scholar 

  60. Czarnek, R.: Three-mirror four-beam interferometer and its capabilities, Opt. Lasers Eng., 15, (1991), 93–101

    Article  Google Scholar 

  61. Poon, C.Y. and M. Kujawinska M., C. Ruiz: Spatial carrier phase-shifting method of fringe pattern analysis for moire interferometer, J. of Strain Analysis, 28, (1993), 79–88

    Article  Google Scholar 

  62. Salbut L., Kujawinska M., Dymny G., „Portable, automatic grating interferometer for laboratory and field studies of material and mechanical elements“, Proc. SPIE, 2342, (1994), 58–65

    Article  ADS  Google Scholar 

  63. Kozlowska, A. and M. Kujawinska, Ch. Gorecki: Grating interferometer with a semiconductor light source, Appl. Opt., 36, (1997), 8116–8120

    ADS  Google Scholar 

  64. Han, B. and D. Post: Immersion interferometry for microscopic moiré interferometry, Exp. Mechanics, 32, (1992), 38–41

    Article  ADS  Google Scholar 

  65. Salbut, L. and M. Kujawinska: Grating microinterferometer for local in-plane displacement/strain fields analysis, Proc. SPIE, 3407, (1998) in press

    Google Scholar 

  66. Salbut, L. and K. Patorski, M. Kujawinska: Polarization approach to high sensitivity moiré interferometry, Opt. Eng., 31, (1992), 434–439

    Article  ADS  Google Scholar 

  67. Kujawinska, M. and L. Salbut, P. Czarnocki: Materials studies of composites by automatic grating interferometer, Proc. SPIE, 2004, (1993), 282–288

    Article  ADS  Google Scholar 

  68. Kosinski, C. and A. Olszak, M. Kujawinska: Adaptive system for smart fringe image processing, Graphics and Machine Vision, 5, (1996), 245–256

    Google Scholar 

  69. Pryputniewicz, R.J.: A hybrid approach to deformation analysis, Proc. SPIE, 2342 (1994) 282–296

    Article  ADS  Google Scholar 

  70. Brown, G.C. and R.J.Pryputniewicz: Experimental and computational determination of dynamic characteristic of microbeam sensors, Proc.SPIE, 2545, (1995), 108–119

    Article  ADS  Google Scholar 

  71. Olszak, A. and K.Patorski: Modified electronic speckle pattern interferometer with reduced number of elements for vibration analysis, 138, Opt.Comm., (1997), 265–269

    Google Scholar 

  72. Nakadate, S. and T.Yatagai, H.Saito: Digital speckle pattern shearing interferometry, Appl.Opt., 19, (1980), 4241–4246

    Article  ADS  Google Scholar 

  73. Wyant, J.C.: Computerized interferometric measurement of surface microstructure, Proc.SPIE, 2576, (1995), 122–130

    Article  ADS  Google Scholar 

  74. Kujawinska M.: Micromechanics: New challenges for photonics, Proc. ATEM’97, (1997), 367–372

    Google Scholar 

  75. Salbut, L. and M. Kujawinska, G.Dymny: Polycrystalline material studies by automatic grating interferometry, Proc. SPIE, 2782, (1996), 513–521

    Article  ADS  Google Scholar 

  76. McKelvie, J. and P.M.Mac Kenzie, A. McDonach, C.A. Walker: Strain distribution measurement in a coarse-grained titanium alloy, Exp. Mechanics, 33, (1993), 320–325

    Article  Google Scholar 

  77. Poon, C.Y. and M.Kujawinska, C.Ruiz: Strain measurement of composite using an automated moiré interferometry, Measurement, 11, (1993), 45–57

    Article  Google Scholar 

  78. Salbut, L. and M.Kujawinska: Novel material studies by automatic grating interferometry, Proc.SPIE, 2861, (1996), 212–219

    Article  ADS  Google Scholar 

  79. Han, B. and Guo Y., Lim C.K.: Application of interferometric techniques to verification of numerical model for microelectronics packaging design“, EEP 10.2, Advances in Electronic Packaging, ASME (1995), 1187–1194

    Google Scholar 

  80. Kujawinska, M. and T. Tkaczyk, R. Pryputniewicz: Computational and experimental hybrid study of deformations in a microelectronic connector, Proc. SPIE, 2545, (1995), 54–70

    Article  ADS  Google Scholar 

  81. Jüptner, W. and M. Kujawinska, W. Osten, L. Sa• but, S. Seebacher: Combinative measurement of silicon microbeams by grating interferometer and digital holography, Proc. SPIE, 3407, (1998) in press

    Google Scholar 

  82. Salbut, L. and M. Kujawinska: Moire interferometry/thermovision method for electronic packaging testing, Proc. SPIE, 3098, (1997), 10–17

    Article  ADS  Google Scholar 

  83. Guo, Y.: Experimental determination of effective coefficients of thermal expansion in electronic packaging“, EEP 10.2, Advances in Electronic Packaging, ASME (1995), 1253–1258

    Google Scholar 

  84. Selverian, J.H and S. Kang: Ceramic—to-metal joints: Part Il — performance and strength preditions, American Ceramic Society Bulletin, 71, No 10, (1992)

    Google Scholar 

  85. Salbut, L. and M.Kujawinska, J.Bulhak: Ceramic-to-metal joint testing by automated grating interferometer, Experimental Mechanics, Allison (ed) Balkema, Rotterdam, (1998), 633–638

    Google Scholar 

  86. Rowlands, R.E.: Residual stress in SEM Handbook of Experimental Mechanics, A.S. Kobayasahi, Edd., Prentice-Hall, Englewood Cliffs, New York, (1987)

    Google Scholar 

  87. Kujawinska, M.: Experimental-numerical analysis of 3D residual stress state in engineering objects, Akademie Verlag Series in Optical Metrology, 3, (1996), 151–158

    Google Scholar 

  88. Swiderski, Z. and A. Wôjtowicz: Plans and progress of controlled experiments on rail residual stress using the EMS-60 machine, in Residual Stress in Rails, 1, Kluver Academic Publ., (1992), 57–66

    Google Scholar 

  89. Groom, J.J: Determination of residual stresses in rails, Final Report for US DOT No DOT/FRA/ORD-83/05, (1983)

    Google Scholar 

  90. Orkisz, J. et al: Discrete analysis of actual residual stress resulting from cyclic loading, Computers Structures, 35, (1990), 397–412

    Google Scholar 

  91. Magiera, J. and J. Orkisz: Experimental-numerical analysis of 3D residual stress state in railroad rails by means of oblique slicing technique, Proc. SPIE, 2342, (1994), 314–325

    Google Scholar 

  92. Gordon, R.: Residual stress and distortion in welded structure — an overwiev of current, U.S.Research Initiatives, IIW-Doc. XV, (1995), 878–95

    Google Scholar 

  93. Wu, Z. and J.Lu: Residual stress by moiré interferometry and incremental hole drilling Exp. Mechanics, I.M.Allison (ed) Balkena, Rotterdam, 2, (1998), 1319–1324

    Google Scholar 

  94. Kujawinska, M. and L. Salbut, A. Olszak, C. Forno: Automatic analysis of residual stresses in rails using grating interferometry in Recent Advances in Exp.-Mech., S.Gomez et al. (eds) Balkena Rotterdam, (1994), 699–704

    Google Scholar 

  95. Kujawinska, M.: The architecture of a multipurpose fringe pattern analysis system, Opt. Lasers Eng., 19, (1993), 261–268

    Article  Google Scholar 

  96. Schwider, -J. et al: Digital wave-front measuring interferometry: some systematic errors sources, App. Optics, 22, (1993), 3421–3432

    ADS  Google Scholar 

  97. Wu, Z. and J.Lu, P.Jouland: Study of residual stress distribution by moiré interferometry incremental drilling method, The Fifth Int. Conf. on Residual Stresses, Linkoping, Sweden, (1997)

    Google Scholar 

  98. Kujawinska, M.and L. Salbut, S. Weise, W. Jüptner: Determination of laser beam weldment properties by grating interefrometry method, Proc. SPIE, 2782, (1996), 224–232

    Google Scholar 

  99. Salbut, L. and M. Kujawinska, D. Holstein, W. Jüptner: Comparative analysis of laser weldment properties by grating interferometer and digital speckle photography, Exp. Mechanics, Allison I.M. (ed), Balkema, Rotterdam, (1998), 1331–1337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Kujawinska, M. (2000). Automated In-Plane Moiré Techniques and Grating Interferometry. In: Laermann, KH. (eds) Optical Methods in Experimental Solid Mechanics. International Centre for Mechanical Sciences, vol 403. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2586-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2586-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83325-4

  • Online ISBN: 978-3-7091-2586-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics