Automated In-Plane Moiré Techniques and Grating Interferometry

  • M. Kujawinska
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 403)


Several problems in experimental solid mechanics and material engineering require determination of in-plane displacement / strain fields. It is especially true if we consider flat samples under simple loading arrangement. The effective experimental tools working under these assumptions are in-plane grid / moiré technique and high sensitivity grating (moiré) interferometry. Below the principles of both techniques and modern solutions of grating / grid technology and design of moiré and interferometric systems are presented. As the fringe patterns obtained at the output of the systems require automatic analysis, the overview of the phase methods of fringe pattern analysis especially suited for various opto-mechanical configuration of the systems are described. Also the interaction of the results with FEM is presented, while referring to various concepts of hybrid experimental-numerical analysis. The result advances in measurement technology expand significantly the applications of the in-plane moiré and grating interferometry techniques. The numerous examples refer to the most challenging applications including local material constant determination, micromeasurements, residual stress analysis and monitoring of various engineering structures.


Residual Stress Fringe Pattern Phase Unwrap Fringe Order Moire Fringe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patorski K.: The Handbook of the Moiré Technique, Elsevier, Oxford, (1993)Google Scholar
  2. 2.
    Cloud, G.: Optical Methods of Engineering Analysis, Cambridge Univ. Press, (1995)Google Scholar
  3. 3.
    Kobayashi, A.S., ed: Handbook of Experimental Mechanics, Prentice Hall, Inc. (1987)Google Scholar
  4. 4.
    Theocaris, P.S.: Moiré Fringes in Strain Analysis, Pergamon Press, Oxford, (1969)Google Scholar
  5. 5.
    Durelli, A.J. and V.J. Parks: Moiré Analysis of Strain, Prentice-Hall, Englewood Cliffs, New Jersey, (1970)Google Scholar
  6. 6.
    Bach, C. and R. Bauman: Elastikität and Festigkeit, Springer, Berlin, (1922)Google Scholar
  7. 7.
    Bell, J.F.: Diffraction grating strain gauge, Proc. SEM, 17(2), Bethel, (1960)Google Scholar
  8. 8.
    Backes, P.G. and W.M. Stevenson: High accuracy image centroid position determination with matrix sensors: An experimental comparison of methods, Proc. of Fifth Int. Congress on Applications of Lasers and Elektro-Optics, Arlington, (1986)Google Scholar
  9. 9.
    Van der Heijden, F.: Image based measurement systems, J.Wiley and Sons Ltd, Chichester and New York, (1994)Google Scholar
  10. 10.
    Born, A. and E. Wolf: Principles of Optics, New York, Oxford, Pergamon Press, (1959)Google Scholar
  11. 11.
    Sciammarella, C.A.: Basic optical law in the interpretation of rhoiré patterns applied to the analysis of strains–Part I., Exp. Mechanics, 5, (1965), 154–160CrossRefGoogle Scholar
  12. 12.
    McKelvie, J.: Moiré strain analysis: an introduction, review and critique, including related techniques and future potentials, The Journal of Strain Analysis, 33, (1998), 137–152CrossRefGoogle Scholar
  13. 13.
    Guild, J.: The interference System of Crosed Diffraction Gratings: Theory of Moiré Fringes, Clarendon Press, Oxford, (1956)Google Scholar
  14. 14.
    Weller, R. and B.M. Shepard: Displacement measurement by mechanical interferometry, Proc. Soc. Exp. Stress Analysis, 6 (1), (1948), 35–38Google Scholar
  15. 15.
    Weissman, E.M. and D. Post: Moiré intrferometry near the theoretical limit, Applied Opt., 21 (9), (1982), 1621–1623ADSCrossRefGoogle Scholar
  16. 16.
    Sevenhuisen, P.J.: Grid methods - a new future, in Proc. of SEM Spring Conf. on Experimental Mechanics, (1989), 445–450Google Scholar
  17. 17.
    Post, D. and B. Han, P.Ifju: High Sensitivity Moiré Interferometry, Springer-Verlag, Berlin, (1994)CrossRefGoogle Scholar
  18. 18.
    Naumann, J.: Grundlagen and Anwendung des In: plane-Moiréverfahrens in der experimentallen festkörpermechanik, Mechanik/Bruchmechanik, 110, VDI Verlag, (1992)Google Scholar
  19. 19.
    Sciammarella, C.A.: Moiré fringe multiplication by means of filtering and wave front reconstruction process, Exp. Mech., 9, (1969), 179–185CrossRefGoogle Scholar
  20. 20.
    Post, D.: Moire fringe multiplication with a nonsymmetrical, doubly blazed reference grating, Appl. Optics, 10, (1971), 901–907ADSGoogle Scholar
  21. 21.
    Huntley, M.C.: Diffraction gratings, Academic Press, (1982)Google Scholar
  22. 22.
    Wiliams, D.C. (ed): Optical methods in engineering metrology, Chapman Hall, London, (1993)Google Scholar
  23. 23.
    Burch, J.M. and C. Forno: A high-sensitivity moiré grid technique for studying deformation in large objects, Opt. Eng., 14, (1975), 175–185ADSGoogle Scholar
  24. 24.
    Forno, C.: Deformation measurement using high resolution moiré photography, Opt. Lasers Eng., 8, (1988), 189–212ADSCrossRefGoogle Scholar
  25. 25.
    McKelvie, J. and C.A. Walker: A practical multiplied moiré-fringe technique, Exp. Mechanics, 18, (1978), 316–320CrossRefGoogle Scholar
  26. 26.
    Ifju, P. and D. Post: Zero thickness specimen gratings for moiré intrferometry, Exp. Techqs., 15 (2), (1991), 45–47CrossRefGoogle Scholar
  27. 27.
    Kujawinska, M. and J.R. Pryputniewicz: Micromeasurement: a challenge for photomechanics, Proc. SPIE, 2782 (1996), 15–24ADSCrossRefGoogle Scholar
  28. 28.
    Kearney, A. and C. Forno: High temperature resistant gratings for moiré interferometry, Exp. Techqs. 17 (6), (1993), 9–12CrossRefGoogle Scholar
  29. 29.
    Dally, J.W. and D.T. Read: Electron-beam moiré, Exp. Mechanics, 33, (1993), 270–277CrossRefGoogle Scholar
  30. 30.
    Dally, J.W. and D.T. Read, E.S. Drexler: Transitioning from optical to electronic moiré, Exp. Mechanics, Allison I.M. (ed), Balkema, Rotterdam, (1998), 437–447Google Scholar
  31. 31.
    Han, B.: Higher sensitivity moiré interferometry for micromechanics studies, Opt. Eng., 31, (1992), 1517–1525ADSCrossRefGoogle Scholar
  32. 32.
    Yatagai, T.: Intensity based analysis methods In Interferogram Analysis, D.W. Robinson and G.T. Reid (eds), Institute of Physics, Bristol, (1993)Google Scholar
  33. 33.
    Osten, W. and W. Jüptner: Digital processing of fringe patterns in optical metrology in Optical Measurement Techniques Applications, P.K. Rastogi Artech House, Boston, (1997)Google Scholar
  34. 34.
    Creath, K: Temporal phase measurement methods, in Interferogram Analysis, D.W.Robinson, G.T.Reid (eds), Institute of Physics, Bristol, (1993)Google Scholar
  35. 35.
    Kujawinska, M: Spatial phase measurement methods, in Interferogram Analysis, D.W.Robinson, G.T.Reid (eds), Institute of Physics, Bristol, (1993)Google Scholar
  36. 36.
    Takeda, M. and H. Ina, S. Kobayashi: Fourier transform method of fringe pattern analysis for computer — based topography and intrferometry, J.Opt. S.c. Am., 72, (1982), 156–160ADSCrossRefGoogle Scholar
  37. 37.
    Bruning, J.H. et al.: Digital wavefront measuring interferometer for testing optical surfaces and lenses, Appl. Opt. 13, (1974), 2693–2703ADSGoogle Scholar
  38. 38.
    Surrel, Y.: Design of algorithms for phase measurements by the use of phase stepping, Appl. Opt., 35, (1996), 51–60ADSGoogle Scholar
  39. 39.
    Stetson, K.A. and W.R. Brohinsky: Electrooptic holography and its application to hologram interferometer, Appl. Opt., 24, (1985), 3632–3637ADSGoogle Scholar
  40. 40.
    Surrel, Y.: Additive noise effect in digital phase detection, Appl. Opt., 36, (1997), 271–276ADSGoogle Scholar
  41. 41.
    Huntley, J.M.: Automated fringe pattern analysis in experimental mechanics: a review, J.Strain Analysis, 33 (1998), 105–125CrossRefGoogle Scholar
  42. 42.
    Kujawiska, M. and J. Wôjciak: Spatial-carrier phase-shifting technique of fringe pattern analysis, Proc. SPIE, 1508, (1991), 61–67ADSCrossRefGoogle Scholar
  43. 43.
    Creath, K. and J. Schmit: N-point spatial phase measurement technique for nondestructive testing, Opt. Lasers Eng., 24, (1996), 365–379CrossRefGoogle Scholar
  44. 44.
    Pirga, M and M. Kujawinska: Two-directional spatial-carrier phase shifting method for analysis of crossed and closed fringe pattren, Opt. Eng., 34, (1995) 2459–2466ADSCrossRefGoogle Scholar
  45. 45.
    Burton, D.R. and M.J. Lalor: Multichannel Fourier fringe analysis as and aid to automatic phase unwrapping, Appl. Opt., 33, (1994), 2939–2948ADSGoogle Scholar
  46. 46.
    Osten, W. and W. Nadeborn, P. Andrä: General hierarchical approach in absolute phase measurement, Proc. SPIE, 2860, (1996) 2–13ADSCrossRefGoogle Scholar
  47. 47.
    Takeda, M: Recent progress in phase-unwrapping techniques, Proc. SPIE, 2782, (1996), 334–343ADSCrossRefGoogle Scholar
  48. 48.
    Huntley, J.M.: New methods for unwrapping noisy phase maps, Proc.SPIE, 2340, (1994), 110–123ADSCrossRefGoogle Scholar
  49. 49.
    Bone, D.J: Fourier fringe analysis: the two-dimensional phase unwrapping problem, Appl.Opt., 30, (1991), 3627–3632ADSCrossRefGoogle Scholar
  50. 50.
    Towers, D.P and T.R. Judge, P.J. Bryanston-Cross: Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI, Opt. Lasers Eng., 14, (1991), 239–281CrossRefGoogle Scholar
  51. 51.
    Ghiglia, D.G. and G.A.Mastin, L.A. Romero: Cellular automata method for phase unwrapping, J.Opt.Soc. Am. A, 4, (1987), 267–280Google Scholar
  52. 52.
    Servin, M. and R. Rodriguez-Vera, A.J. Moore: A robust cellular processor for phase unwrapping, J.Mod.Opt., 41, (1994), 119–127ADSCrossRefGoogle Scholar
  53. 53.
    Huntley, J.M. and H. Saldner: Temporal phase unwrapping algorithm for automated interferogram analysis, Appl. Opt. 32, (1993), 3047–3052ADSGoogle Scholar
  54. 54.
    Vrooman, H.A. and A.A. Mass: New image processing algorithms for the analysis of speckle interference patterns, Proc. SPIE, 1163, (1989), 51–61ADSCrossRefGoogle Scholar
  55. 55.
    Czarnek, R.: High sensitivity modre interferometer with compact achromatic head, Opt. Lasers Eng., 13, (1990), 93–101Google Scholar
  56. 56.
    Epstein, J.: Moiré interferometry: past achievements and present directions, Opt. Lasers Eng., 12, (1990), 77–79CrossRefGoogle Scholar
  57. 57.
    McKelvie, J. and C.A. Walker, P.M. MacKenzie: A workaday more interferometer: conceptual and design considerations: operation; applications; variations; limitations., Proc. SPIE, 814, (1987), 464–474Google Scholar
  58. 58.
    McKelvie, J. and K. Patorski: Influence of the slopes of the specimen grating surface on out-of-plane displacements by moiré interferometry, Appl. Opt., 27, (1988), 4603–4605ADSGoogle Scholar
  59. 59.
    Kujawinska, M. and L.Salbut: Recent development in instrumentation of automated grating interferometry“, Optica Applicata, 25, (1995), 211–232Google Scholar
  60. 60.
    Czarnek, R.: Three-mirror four-beam interferometer and its capabilities, Opt. Lasers Eng., 15, (1991), 93–101CrossRefGoogle Scholar
  61. 61.
    Poon, C.Y. and M. Kujawinska M., C. Ruiz: Spatial carrier phase-shifting method of fringe pattern analysis for moire interferometer, J. of Strain Analysis, 28, (1993), 79–88CrossRefGoogle Scholar
  62. 62.
    Salbut L., Kujawinska M., Dymny G., „Portable, automatic grating interferometer for laboratory and field studies of material and mechanical elements“, Proc. SPIE, 2342, (1994), 58–65ADSCrossRefGoogle Scholar
  63. 63.
    Kozlowska, A. and M. Kujawinska, Ch. Gorecki: Grating interferometer with a semiconductor light source, Appl. Opt., 36, (1997), 8116–8120ADSGoogle Scholar
  64. 64.
    Han, B. and D. Post: Immersion interferometry for microscopic moiré interferometry, Exp. Mechanics, 32, (1992), 38–41ADSCrossRefGoogle Scholar
  65. 65.
    Salbut, L. and M. Kujawinska: Grating microinterferometer for local in-plane displacement/strain fields analysis, Proc. SPIE, 3407, (1998) in pressGoogle Scholar
  66. 66.
    Salbut, L. and K. Patorski, M. Kujawinska: Polarization approach to high sensitivity moiré interferometry, Opt. Eng., 31, (1992), 434–439ADSCrossRefGoogle Scholar
  67. 67.
    Kujawinska, M. and L. Salbut, P. Czarnocki: Materials studies of composites by automatic grating interferometer, Proc. SPIE, 2004, (1993), 282–288ADSCrossRefGoogle Scholar
  68. 68.
    Kosinski, C. and A. Olszak, M. Kujawinska: Adaptive system for smart fringe image processing, Graphics and Machine Vision, 5, (1996), 245–256Google Scholar
  69. 69.
    Pryputniewicz, R.J.: A hybrid approach to deformation analysis, Proc. SPIE, 2342 (1994) 282–296ADSCrossRefGoogle Scholar
  70. 70.
    Brown, G.C. and R.J.Pryputniewicz: Experimental and computational determination of dynamic characteristic of microbeam sensors, Proc.SPIE, 2545, (1995), 108–119ADSCrossRefGoogle Scholar
  71. 71.
    Olszak, A. and K.Patorski: Modified electronic speckle pattern interferometer with reduced number of elements for vibration analysis, 138, Opt.Comm., (1997), 265–269Google Scholar
  72. 72.
    Nakadate, S. and T.Yatagai, H.Saito: Digital speckle pattern shearing interferometry, Appl.Opt., 19, (1980), 4241–4246ADSCrossRefGoogle Scholar
  73. 73.
    Wyant, J.C.: Computerized interferometric measurement of surface microstructure, Proc.SPIE, 2576, (1995), 122–130ADSCrossRefGoogle Scholar
  74. 74.
    Kujawinska M.: Micromechanics: New challenges for photonics, Proc. ATEM’97, (1997), 367–372Google Scholar
  75. 75.
    Salbut, L. and M. Kujawinska, G.Dymny: Polycrystalline material studies by automatic grating interferometry, Proc. SPIE, 2782, (1996), 513–521ADSCrossRefGoogle Scholar
  76. 76.
    McKelvie, J. and P.M.Mac Kenzie, A. McDonach, C.A. Walker: Strain distribution measurement in a coarse-grained titanium alloy, Exp. Mechanics, 33, (1993), 320–325CrossRefGoogle Scholar
  77. 77.
    Poon, C.Y. and M.Kujawinska, C.Ruiz: Strain measurement of composite using an automated moiré interferometry, Measurement, 11, (1993), 45–57CrossRefGoogle Scholar
  78. 78.
    Salbut, L. and M.Kujawinska: Novel material studies by automatic grating interferometry, Proc.SPIE, 2861, (1996), 212–219ADSCrossRefGoogle Scholar
  79. 79.
    Han, B. and Guo Y., Lim C.K.: Application of interferometric techniques to verification of numerical model for microelectronics packaging design“, EEP 10.2, Advances in Electronic Packaging, ASME (1995), 1187–1194Google Scholar
  80. 80.
    Kujawinska, M. and T. Tkaczyk, R. Pryputniewicz: Computational and experimental hybrid study of deformations in a microelectronic connector, Proc. SPIE, 2545, (1995), 54–70ADSCrossRefGoogle Scholar
  81. 81.
    Jüptner, W. and M. Kujawinska, W. Osten, L. Sa• but, S. Seebacher: Combinative measurement of silicon microbeams by grating interferometer and digital holography, Proc. SPIE, 3407, (1998) in pressGoogle Scholar
  82. 82.
    Salbut, L. and M. Kujawinska: Moire interferometry/thermovision method for electronic packaging testing, Proc. SPIE, 3098, (1997), 10–17ADSCrossRefGoogle Scholar
  83. 83.
    Guo, Y.: Experimental determination of effective coefficients of thermal expansion in electronic packaging“, EEP 10.2, Advances in Electronic Packaging, ASME (1995), 1253–1258Google Scholar
  84. 84.
    Selverian, J.H and S. Kang: Ceramic—to-metal joints: Part Il — performance and strength preditions, American Ceramic Society Bulletin, 71, No 10, (1992)Google Scholar
  85. 85.
    Salbut, L. and M.Kujawinska, J.Bulhak: Ceramic-to-metal joint testing by automated grating interferometer, Experimental Mechanics, Allison (ed) Balkema, Rotterdam, (1998), 633–638Google Scholar
  86. 86.
    Rowlands, R.E.: Residual stress in SEM Handbook of Experimental Mechanics, A.S. Kobayasahi, Edd., Prentice-Hall, Englewood Cliffs, New York, (1987)Google Scholar
  87. 87.
    Kujawinska, M.: Experimental-numerical analysis of 3D residual stress state in engineering objects, Akademie Verlag Series in Optical Metrology, 3, (1996), 151–158Google Scholar
  88. 88.
    Swiderski, Z. and A. Wôjtowicz: Plans and progress of controlled experiments on rail residual stress using the EMS-60 machine, in Residual Stress in Rails, 1, Kluver Academic Publ., (1992), 57–66Google Scholar
  89. 89.
    Groom, J.J: Determination of residual stresses in rails, Final Report for US DOT No DOT/FRA/ORD-83/05, (1983)Google Scholar
  90. 90.
    Orkisz, J. et al: Discrete analysis of actual residual stress resulting from cyclic loading, Computers Structures, 35, (1990), 397–412Google Scholar
  91. 91.
    Magiera, J. and J. Orkisz: Experimental-numerical analysis of 3D residual stress state in railroad rails by means of oblique slicing technique, Proc. SPIE, 2342, (1994), 314–325Google Scholar
  92. 92.
    Gordon, R.: Residual stress and distortion in welded structure — an overwiev of current, U.S.Research Initiatives, IIW-Doc. XV, (1995), 878–95Google Scholar
  93. 93.
    Wu, Z. and J.Lu: Residual stress by moiré interferometry and incremental hole drilling Exp. Mechanics, I.M.Allison (ed) Balkena, Rotterdam, 2, (1998), 1319–1324Google Scholar
  94. 94.
    Kujawinska, M. and L. Salbut, A. Olszak, C. Forno: Automatic analysis of residual stresses in rails using grating interferometry in Recent Advances in Exp.-Mech., S.Gomez et al. (eds) Balkena Rotterdam, (1994), 699–704Google Scholar
  95. 95.
    Kujawinska, M.: The architecture of a multipurpose fringe pattern analysis system, Opt. Lasers Eng., 19, (1993), 261–268CrossRefGoogle Scholar
  96. 96.
    Schwider, -J. et al: Digital wave-front measuring interferometry: some systematic errors sources, App. Optics, 22, (1993), 3421–3432ADSGoogle Scholar
  97. 97.
    Wu, Z. and J.Lu, P.Jouland: Study of residual stress distribution by moiré interferometry incremental drilling method, The Fifth Int. Conf. on Residual Stresses, Linkoping, Sweden, (1997)Google Scholar
  98. 98.
    Kujawinska, M.and L. Salbut, S. Weise, W. Jüptner: Determination of laser beam weldment properties by grating interefrometry method, Proc. SPIE, 2782, (1996), 224–232Google Scholar
  99. 99.
    Salbut, L. and M. Kujawinska, D. Holstein, W. Jüptner: Comparative analysis of laser weldment properties by grating interferometer and digital speckle photography, Exp. Mechanics, Allison I.M. (ed), Balkema, Rotterdam, (1998), 1331–1337Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • M. Kujawinska
    • 1
  1. 1.Warsaw University of TechnologyWarsawPoland

Personalised recommendations