Advertisement

Hybrid Techniques in Experimental Solid Mechanics

  • K-H. Laermann
Part of the International Centre for Mechanical Sciences book series (CISM, volume 403)

Abstract

Optical methods in experimental solid mechanics, yielding field information, combined with digital image processing and on-line evaluation of the experimentally obtained data by means of numerical procedures enable the stress-strain analysis of many problems, which couldn’t be analysed satisfactorily as yet. Thus the effects of non-linear elastic, of viscoelastic material response and of any combination of such materials on the stress-strain state can be considered. Hybrid techniques, i.e. the combination of measurement techniques with numerical methods for data evaluation based on advanced mathematical algorithms yield reliable knowledge on the actual state and the real reactions of any kind of structures.. As the originally obtained experimental data generally do not meet the finally wanted information these pre-processed and digitized data are to evaluate by numerical procedures like the boundary-integral method and its discrete modification, the boundary-element method or the finite-element method.

Keywords

Harmonic Function Principal Stress Nodal Point Hybrid Technique Experimental Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 2

  1. 2.1.
    Laermann, K.H.: Uber die Bestimmung des vollständigen Spannungszustandes in Platten mit großer Durchbiegung, VDI-Berichte Nr. 399, VDI-Verlag, Düsseldorf 1981, 45–49.Google Scholar
  2. 2.2.
    Aben,H.: Integrated Photoelasticity, McGraw-Hill, New York 1979.Google Scholar

Chapter 3

  1. 3.1.
    Wolf,H.: Spannungsoptik, Bd.1, 2.Auflage, Springer-Verlag, Berlin/ Heidelberg/New York 1976.CrossRefGoogle Scholar
  2. 3.2.
    Kauderer,H.: Nichtlineare Mechanik, Springer-Verlag, Berlin/Göttingen/Heidelberg 1958.CrossRefMATHGoogle Scholar
  3. 3.3.
    Neumann, F.E.: Die Gesetze der Doppelbrechung des Lichtes in comprimierten oder ungleichförmig erwärmten unkristallinen Körpern, Abh. Königl. Akademie der Wissenschaften zu Berlin (1841).Google Scholar
  4. 3.4.
    Coker,E.G. and L.N.G. Filon: A Treatise on Photoelasticity, 2“d.ed. (Ed.H.T. Jessop ), Cambridge Univ. Press 1957.Google Scholar
  5. 3.5.
    Mindlin,R.D.: A Mathematical Theory of Photo-viscoelasticity, J.Appl. Physics, Vol. 20, (1949).Google Scholar
  6. 3.6.
    Laermann, K.-H.: Ein experimentell-rechnerisches Verfahren zur Analyse zweidimensionaler Spannungszustände bei nichtlinear-elastischem Stoffverhalten, Berichte ikm, 5, Weimar 1990, 37–41.Google Scholar
  7. 3.7.
    Engeln-Müllges,G. and F. Reutter: Formelsammlung zur Numerischen Mathematik mit Standard FORTRAN 77-Programmen, 6. Auflage, Wissenschaftsverlag, Mannheim/Wien/Zürich 1988.Google Scholar
  8. 3.8.
    Dowell M. and P.Jarratt: The “Pegasus”-Method for Computing the Root of an Equation, BIT 11 (1971).Google Scholar

Chapter 4

  1. 4.1.
    Pindera,J.T.: Remarks on Properties of Photo-viscoelastic Model Materials, Exp. Mechanics, 6 (1966).Google Scholar
  2. 4.2.
    Theocaris,P.S.: A Review of the Rheo-optical Properties of Linear High Polymers, Exp. Mechanics, 5 (1065).Google Scholar
  3. 4.3.
    Dill, E.H.: Photoviscoelasticity, in: Proc.4th Symp. On Naval Structural Mechanics, Mechanics and Chemistry of Solid Propellants, Pergamon Press, 1965.Google Scholar
  4. 4.4.
    Dill, E.H.: Photoviscoelasticity, in: The Photoelastic Effect and its Application (Ed. J.Kestens), Springer-Verlag, Berlin/Göttingen/ Heidelberg 1975.Google Scholar
  5. 4.5
    Coleman, B.D. and E.H. Dill: Photoviscoelasticity: Theory and Practice, in: The Photoelastic Effect and its Application (see ref.4.4.)Google Scholar
  6. 4.6.
    Dill, E.H. and C.Fowlkes: Photoviscoelastic Experiments, The Trend in Engineering, 7 (1964)Google Scholar
  7. 4.7.
    Coleman, B.D. and E.H. Dill: Theory of Induced Birefringence in Materials with Memory, J.Mech.Phys.Solids, Vol. 19, (1971).Google Scholar
  8. 4.8.
    Flügge,W.: Viscoelasticity, Springer-Verlag, Berlin/ Göttingen/ Heidelberg 1975.Google Scholar
  9. 4.9.
    Engeln-Müllges,G. and F. Reutter: Formelsammlung zur Numerischen Mathematik mit Standard FORTRAN 77-Programmen, 6.Auflage, Wissenschaftsverlag, Mannheim/Wien/Zürich 1988.Google Scholar

Chapter 5

  1. 5.1.
    Smirnow, W.I.: Lehrgang der Höheren Mathematik, Teil IV, VEB Deutscher Verlag d. Wissenschaften, Berlin 1975.Google Scholar
  2. 5.2.
    Hartmann, F.: Methode der Randelemente, Springer-Verlag, Berlin/ Heidelberg/New York/London/Paris/Tokyo 1987.CrossRefMATHGoogle Scholar
  3. 5.3.
    Laermann, K.-H.: On a Hybrid Method to Analyse Viscoelastic Problems,in: Advances in Continuum Mechanics (Ed. Brüller/ Mannl/ Najar),Springer-Verlag, Berlin/Heidelberg/New York 1991, 455–465.Google Scholar
  4. 5.4
    Lee, E.H. and T.G. Rogers: Viscoelastic Stress Analysis using measured Creep or Relaxation Functions, J.Appl.Mech.,30 (1963). (for further references see chapter 4.)Google Scholar

Chapter 6

  1. 6.1.
    Wernicke, G. and W.Osten: Holographische Interferometrie, VEB-Fachbuchverlag, Leipzig 1982.Google Scholar
  2. 6.2.
    Laermann, K.-H.: On the Evaluation of Holographic Interferograms to Determine the Interior Strain State in 3-D Solids, Proc. CSME Mech. Eng. Forum 1990, VoI.II, Toronto 1990.Google Scholar
  3. 6.3.
    Leipholz, H.: Einführung in die Elastizitätslehre, Wissenschaft und Technik, Verlag G. Braun, Karlsruhe 1968.Google Scholar
  4. 6.4.
    Smirnow, W.I.: Lehrgang der Höheren Mathematik, Teil II, 8.Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin 1968.Google Scholar

Chapter 7

  1. 7.1
    Jones, R. and C. Wykes: Holographic and Speckle Interferometry, Cambridge University Press,1989.Google Scholar
  2. 7.2.
    Ettemeyer, A.: Ein neues holografisches Verfahren zur Verformungs- und Dehnungsbestimmung, Diss. Universität Stuttgart (1988).Google Scholar
  3. 7.3.
    Zamperoni,P.: Methoden der digitalen Bildsignalverarbeitung,Viehweg Sohn, Braunschweig 1989Google Scholar
  4. 7.4
    Laermann, K.H. und H.G. Monschau: Hybrid Analysis of Shell Structures by means of Electronic Speckle Interferometry combined with FEM, Acta Mechanica Slovaca, 1/1998, 3–8.Google Scholar
  5. 7.5.
    Bathe, K.-J.: Finite-Elemente-Methoden, Springer-Verlag, Berlin/ Heidelberg/New York 1986.CrossRefMATHGoogle Scholar
  6. 7.6
    ANSYS Users Manual, Vol.3 and 4, Swanson Analysis System Inc.Google Scholar

Chapter 8

  1. 8.1
    Laermann, K.-H.: Reflections on the Accuracy of Photoelastic Stress Analysis, ÖIAZ, 142.Jg.,Hft. 5/1997, 396–401.Google Scholar
  2. 8.2.
    Moritz, H.:General Considerations Regarding Inverse and Related Problems, in G. Anger et al. (eds.): Inverse Problems: Principles and Applications in Geophysics, Technology and Medicine, Akademie-Verlag, Berlin 1993, 11–23.Google Scholar
  3. 8.3.
    Pindera, J.T.: New Physical Trends in Experimental Mechanics,in CISM Courses and Lectures No.264, Springer-Verlag Wien-New York, 1981, 203–327.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • K-H. Laermann
    • 1
  1. 1.Bergische University of WuppertalWuppertalGermany

Personalised recommendations