How to Fold a Membrane

  • Sergio Pellegrino
  • Julian F. V. Vincent
Part of the International Centre for Mechanical Sciences book series (CISM, volume 412)


Due to their small thickness, membranes can be easily bent, but are comparatively difficult to stretch. Hence, in studying the packaging of membranes it is normal to model them as inextensional plates of zero thickness.


Gaussian Curvature Solar Sail Folding Pattern Mechanical Advantage Single Fold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Calladine, C. R. (1983). Theory of Shell Structures, Cambridge University Press, Cambridge.CrossRefMATHGoogle Scholar
  2. Cambridge Consultants Ltd (1989), Design study for a Mars spacecraft,Technical Report. Duncan, J. P. and Duncan, J. L. (1982). Folded Developables. Proceedings of the Royal Society of London, Series A, 383: 191–205.Google Scholar
  3. Guest, S. D. and Pellegrino, S. (1992). Inextensional wrapping of flat membranes. In Proceedings of First International Seminar on Structural Morphology, Montpellier, La Grand Motte, 7–11 September 1992 (Edited by R. Motro and T. Wester ), 203–215. LMGC, Universite Montpellier II.Google Scholar
  4. Haas, F. (1994). Geometry and mechanics of hind-wing folding in Dermaptera and Coleoptera, M.Phil thesis, Exeter University.Google Scholar
  5. Huso, M. A. (1960). Sheet reel,U.S. Patent no 2942794.Google Scholar
  6. Johnson, W and Yu, T. X. (1980). The angle of fold and the plastic work done in the folding of developable flat sheets of metal, Journal of Mechanical Engineering Science, 22: 233–241.CrossRefGoogle Scholar
  7. Kobayashi, H., Kresling, B. and Vincent, J. F. V. (1998). The geometry of unfolding tree leaves, Proceedings of the Royal Society, Series B, 265: 147–154.CrossRefGoogle Scholar
  8. Lanford, W. E. (1961). Folding apparatus,U.S. Patent no 3010372.Google Scholar
  9. Miura, K. (1980). Method of packaging and deployment of large membranes in space, Proceedings of 31st IAF Congress, Tokyo, Paper no IAF-80-A31.Google Scholar
  10. Miura, K. (1989). A note on intrinsic geometry of Origami, Proceedings of International Meeting on Origami Science and Technology, Ferrara, Italy.Google Scholar
  11. Miura, K. and Natori, M. (1985). 2-D array experiment on board a space flyer unit. Space Solar Power Review, 5: 345–356.Google Scholar
  12. Miura, K., Sakamaki, M., Suzuki, K. (1980). A novel design of folded map, Congress of the International Cartographical Association, Tokyo.Google Scholar
  13. Natori, M. C., Kuninaka, H., Higuchi, K., Kawai, Y. and Ikegami, S. (1995). Two-dimensionally deployable high voltage (2D/HV) solar cell array experiment in space. In Proc. AIAA/ASME/ ASCE/AHS/ASC 36th Structures, Structural Dynamics, and Materials Conference,10–12 April, 1995 New Orleans, AIAA-95–1512.Google Scholar
  14. Tanizawa, K. and Miura, K. (1978). Large displacement configuration of biaxially compressed infinite plate. Transactions of Japan Society of Aeronautics and Space Science, 20: 177–187.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Sergio Pellegrino
    • 1
  • Julian F. V. Vincent
    • 2
  1. 1.University of CambridgeCambridgeUK
  2. 2.Centre for BiomimeticsThe University of ReadingUK

Personalised recommendations