Finite Element Simulation of Deployable Structures

  • Michel Géradin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 412)


The purpose of this chapter is to describe a general methodology for efficient and general computer simulation of deployable mechanical systems.


Finite Element Simulation Multibody System Kinematic Constraint Multi Body System Rotation Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Cardona and M. Géradin and D.B. Doan. (1991). Rigid and flexible joint modelling in multibody dynamics using finite elements. Comp. Meth. in Appl. Mech. and Eng. 89:395–418 CrossRefGoogle Scholar
  2. Agrawal, O., and Shabana, A. (1986). Application of defotmable-body mean axis to flexible multibody system dynamics. Comp. Meth. in Appl. Mech. and Eng. 56:217–245.CrossRefMATHGoogle Scholar
  3. Angeles, J. (1982). Spatial Kinematic Chains. Springer-Verlag.Google Scholar
  4. Angeles, J. (1988). Rational Kinematics. Springer-Verlag.Google Scholar
  5. Asada, H., and Slotine, J. (1986). Robot Analysis and Control. John Wiley & Sons.Google Scholar
  6. Bathe, K., and Bolourchi, S. (1979). Large displacement analysis of three-dimensional beam structures. Int. Jnl. Num. Meth. Engng. 14: 961–986.CrossRefMATHGoogle Scholar
  7. Bottema, O., and Roth, B. (1979). Theoretical Kinematics. Holland: North-Holland Publishing Co.MATHGoogle Scholar
  8. Cardona, A., and Géradin, M. (1989). Time integration of the equations of motion in mechanism analysis. Computers and Structures 33: 801–820.CrossRefMATHGoogle Scholar
  9. Cardona, A., and Géradin, M. (1991). Modelling of superelements in mechanism analysis. Int. Jnl. Num. Meth. Engng. 32 (8): 1565–1594.CrossRefMATHGoogle Scholar
  10. Cardona, A., and Géradin, M. (1993). Kinematic and dynamic analysis of mechanisms with cams. Comp. Meth. in Appl. Mech. and Eng. (103): 115–134. (Contribution to Besseling anniversary issue).Google Scholar
  11. Cardona, A., and Géradin, M. (1994). Numerical integration of second-order differential-algebraic systems in flexible mechanism dynamics. In Pereira, M. S., and Ambrosio, J., eds., Computer-Aided Analysis of Rigid and Flexible Mechanical Systems. NATO ASI series, vol. E-268.Google Scholar
  12. Chedmail, P. (1990). Synthèse de robots et de sites robotisés - Modélisation de robots souples. Ph.D. Dissertation, Thèse de Doctorat d’Etat - mention Sciences, Ecole Centrale de Nantes.Google Scholar
  13. Craig, R., and Bampton, M. (1968). Coupling of substructures for dynamic analysis. AIAA Jnl 6 (7): 1313–1319.CrossRefMATHGoogle Scholar
  14. Craig, J. (1986). Introduction to Robotics - Mechanics and Control. Addison Wesley.Google Scholar
  15. Ebner, A., and Uccifero, J. (1972). A theoretical and numerical comparison of elastic nonlinear finite element methods. Comp. Meth. in Appl. Mech. and Eng. 2:1043–1061.Google Scholar
  16. Euler, L. (1776). Nova methodus motum corporum rigidorum determinandi. Opera Oninia 2 (9): 99–125.Google Scholar
  17. Fraeijs de Veubeke, B. (1972). A new variational principle for finite elastic displacements. Int. Jnl. Eng. Sci. 10: 745–763.CrossRefMATHMathSciNetGoogle Scholar
  18. Garcia de Jalon, J., and Bayo, E. (1994). Kinematic and Dynamic Simulation of Multibody Systems - The Real Challenge. Springer Verlag.Google Scholar
  19. Géradin, M., and Cardona, A. (1991). Substructuring techniques in flexible multibody systems. In Eight VPI & SII Symposium on Dynamics and Control of Large Space Structures.Google Scholar
  20. Géradin, M., and Cardona, A. (2000). Flexible Multibody Dynamics: A Finite Element Approach. John Wiley & Sons. to appear.Google Scholar
  21. Géradin, M., and Rixen, D. (1994). Mechanical Vibrations - Theory and Application to Structural Dynamics. J. Wiley.Google Scholar
  22. Géradin, M., Hogge, M., and Idelsohn, S. (1983a). Implicit finite element method. In Belytschko, T., and Hughes, T., eds., Computational Methods fhr Transient analysis, 417–471.Google Scholar
  23. Géradin, M., Robert, G., and Bernardin, C. (1983b). Dynamic modelling of manipulators with flexible members. In A., D., and Géradin, M., eds., Advanced Software in Robotics.Google Scholar
  24. Géradin, M. (1994). Energy conserving time integration for multibody dynamics - application to top motion. In Mecanica C’ontputacional, Volume 14, 573–586. Associacion Argentina de Mecanica Computacional.Google Scholar
  25. Goldstein, H. (1964). Classical Mechanics. Addison-Wesley Publishing Co, Inc.Google Scholar
  26. Hartenberg, R., and Denavit, I. (1964). Kinematic Synthesis of Linkages. McGraw-Hill.Google Scholar
  27. Haug, E. (1989). Computer-Aided Kinematics and Dynamics of Mechanical Systems, volume I. Allyn and Bacon.Google Scholar
  28. Hilber, H., Hughes, T., and Taylor, R. (1977). Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics 5: 283–292.CrossRefGoogle Scholar
  29. Hiller, M., and Kecskeméthy, A. (1994). Dynamics of multibody systems with minimal coordinates. In Pereira, M. S., and Ambrosio, J., eds., Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, 61–100. NATO ASI series, vol. E-268.Google Scholar
  30. Hiller, M. (1992). Computer-aided kinematics and dynamics of multibody systems with application in vehicle dynamics. Technical report, Universität - GH- Duisburg, Fachgebiet Mechatronik.Google Scholar
  31. Hughes, T. (1987). The Finite Element Method - Linear Static and Dynamic Finite Element Analysis. Prentice Hall Inc., New Jersey.MATHGoogle Scholar
  32. Lur’é, L. (1968). Mécanique Analytique (tomes 1 et 2). Librairie Universitaire. (translated from Russian).Google Scholar
  33. Meirovitch, L. (1970). Methods of Analytical Dynamics. Mc Graw Hill.Google Scholar
  34. Newmark, N. (1959). A method of computation for structural dynamics. Jnl. Eng. Mech. Div. ASCE 85 (EM3), Proc. Paper 2094: 67–94.Google Scholar
  35. Nikravesh, P. (1988). Computer-Aided Analysis of Mechanical Systems. Prentice-Hall International, Inc.Google Scholar
  36. Orlandea, N., Chace, M., and Calahan, D. (1977). A sparsity oriented approach to the dynamic analysis and design of mechanical systems, parts I and II. ASME Journal of Engineering for Industry 99: 773–784.CrossRefGoogle Scholar
  37. Paul, R. (1981). Robot Manipulators: Mathematics, Programming, and Control. MIT Press.Google Scholar
  38. Rixen, D., Thonon, C., and Géradin, M. (1996). Impedance and admittance of continuous systems and comparison betwen discrete and continuous models. In ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies.Google Scholar
  39. Shabana, A., and Wehage, R. (1983). A coordinate reduction technique for dynamic analysis of spatial substructures with large angular rotations. Journal of Structures and Machines 11: 401–431.Google Scholar
  40. Shabana, A. (1985). Substructure synthesis methods for dynamic analysis of multi-body systems. Computers and Structures 20: 737–744.CrossRefMATHGoogle Scholar
  41. Shabana, A. (1989). Dynamics of Multibody Systems. John Wiley & Sons.Google Scholar
  42. Shabana, A. (1997). Flexible multibody dynamics: Review of past and recent developments. Multibody System Dynamics 1: 189–222.CrossRefMATHMathSciNetGoogle Scholar
  43. Simo, J., and Vu-Quoc, L. (1986). A three-dimensional finite strain rod model, part II: Computer aspects. Comp. Meth. in Appl. Mech. and Eng. 58:79–116.Google Scholar
  44. Walrapp, O. (1991). Linearized flexible multibody dynamics including geometric stiffening effects. 19: 385–409.Google Scholar
  45. Whittaker, E. (1965). A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press. (fourth edition).Google Scholar
  46. Wittenburg, J. (1977). Dynamics of Systems of Rigid Bodies. Stuttgart: Teubner.CrossRefMATHGoogle Scholar
  47. Wu, S., and Haug, E. (1988). Geometric nonlinear substructuring for dynamics of flexible mechanical systems. Int. Jnl. Num. Meth. Engng. 26: 2211–2226.CrossRefMATHGoogle Scholar
  48. Yoo, W., and Haug, E. (1986a). Dynamics of articulated structures. part I. theory. Journal of Structures and Machines 14: 105–126.Google Scholar
  49. Yoo, W., and Haug, E. (1986b). Dynamics of articulated structures. part II. computer implementation and applications. Journal of Structures and Machines 14: 177–189.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Michel Géradin
    • 1
    • 2
  1. 1.Joint Research CentreIspraItaly
  2. 2.University of LiègeBelgium

Personalised recommendations