Advertisement

Foldable Tensegrities

  • René Motro
  • Mourad Bouderbala
  • Cédric Lesaux
  • Franck Cévaer
Part of the International Centre for Mechanical Sciences book series (CISM, volume 412)

Abstract

Folding is required to reduce the volume of objects in space. This operation allows transportation and storage of folded objects. The use of folding systems has greatly evolved since the itinerant habitation of the first men. Nowadays it covers a wide range of applications, from the simple fisherman’s chair, to architectural projects and satellite components.

Keywords

Folding Process Nodal Displacement Vector Folding Mode Permanent Contact Potential Energy Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouderbala M., (1998). Systèmes spatiaux pliables/dépliables: cas des systèmes de tensegrité. Thesis disseration, LMGC, Université de Montpellier I I.Google Scholar
  2. Calatrava, S.,(1993). Sobre la plegabilidad de entramados, In Arquitectura Transformable,Publicacion de la Escola Tecnica Superior de Arquitectura de Sevilla, 33–93.Google Scholar
  3. Furuya, H., (1992). Concept of deployable tensegrity structures in space application. In International Journal of Space Structures, Vol. 7 No. 2. 143–151.Google Scholar
  4. Kwan, A.S.K, You Z. and Pellegrino S., (1993) Active and passive cable elements in deployable/retractable masts In International Journal of Space Structures, Vol. 8 N° 1 /2, 29–40.Google Scholar
  5. Kwan, A.S.K, Pellegrino S., (1993). Design and performance of the octahedral deployable space antenna (Odesa). In International Journal of Space Structures, Vol. 9 N° 3, 163–173.Google Scholar
  6. Graybill (1969). Introduction to matrices with applications in statistics. Wrels Worth Publishing Company, Inc., Belmont, California.Google Scholar
  7. Hanaor, A., (1993). Double-layer tensegrity grids as deployable structures. In International Journal of Space Structures, Vol. 8 Nos. 1& 2, 135–145.Google Scholar
  8. Hangai, Y., (1991). Analytical procedure for stabilizing paths and stability of kinematically indeterminate frameworks. In International Association for Spatial and Shell Structures Symposium 1991 Proceedings, Copenhagen.Google Scholar
  9. Le Saux C., (1998). « Modélisation numérique du pliage des systèmes de tenségrité avec prise en compte des contacts ». Mémoire de DEA, Université de Montpellier I I.Google Scholar
  10. Motro R., (1983). Formes et forces dans les systèmes constructifs. Application aux systèmes réticulés spatiaux autocontraints. Thèse d’Etat. Université Montpellier 11, France.Google Scholar
  11. Motro R. and Bouderbala M., (1996). « Mobile Tensegrity Systems » in MARAS 96 u Mobile and Rapidly Assembled Structures II ». 103–113.Google Scholar
  12. Motro, R., Liu, Y.,X., (1995). Energy and morphology for structure. In International Association for Spatial and Shell Structures Symposium 1995 Proceedings, ed by G.C. Giuliani, SGE pub., Padovia, Vol. 2. 819–825.Google Scholar
  13. Pellegrino S., Calladine, (1986). Matrix analysis of statically and kinematically indeterminate frameworks. In International Journal of Solids and Structures, Vol. 22. 409–428.Google Scholar
  14. Vassart N., Laporte R., Motro R. Determination of mechanisms’s order for kinematically and statically indeterminate systems. International Journal of Solids and Structures. 37 (2000) 3807–3839.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • René Motro
    • 1
  • Mourad Bouderbala
    • 1
  • Cédric Lesaux
    • 1
  • Franck Cévaer
    • 1
  1. 1.Laboratoire de Mécanique et Génie CivilUniversité de MontpellierFrance

Personalised recommendations