Deployable Structures in Engineering

  • Sergio Pellegrino
Part of the International Centre for Mechanical Sciences book series (CISM, volume 412)


In this chapter we consider a type of transformable structures, capable of executing large configuration changes in an autonomous way. In most cases, their configuration changes between a compact, packaged state and a large, deployed state: the transformation from the former to the latter state is called deployment. The reverse transformation is called retraction.


Solar Array Collapsible Tube Space Radio Telescope Deployable Structure Flexible Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, P.K., Anderson, M.S., and Card, M.F. (1981), Preliminary design of flat reflectors with flat facets, IEEE Transactions, Vol. AP-29, No 4.Google Scholar
  2. Aguirre, M., Bureo, R., Fuentes, M. and Rivacoba, J. (1985). The collapsible tube mast (CTM). In Proc. Second European Space Mechanisms and Tribology Symposium,Meersburg, Germany 9–11 October, 1985 pp 75–81. ESA SP-231.Google Scholar
  3. Calladine, C.R. (1988). The theory of thin shell structures 1888–1988. Proceedings of the Institution of Mechanical Engineers, 202: 1–9.Google Scholar
  4. Crawford, R.N. (1971). Strength and efficiency of deployable booms for space applications. In Proc. AAS/AIAA Variable Geometry and Expandable Structures Conference, 21–23 April 1971, AIAA Paper 71–396.Google Scholar
  5. de Kam, J. (1986). EURECA application of the RARA solar array. In Proc. 5th European Symposium Photovoltaic Generators in Space,Scheveningen, The Netherlands, 30 September-2 October 1986 pp 105–114. ESA-SP-267.Google Scholar
  6. Elder, D.C. (1995). Out from behind the eight-ball: a history of project Echo, Vol. 16, American Astronautical Society, San Diego, CA.Google Scholar
  7. Freeland, R.E., Bilyeu, G.D., Veal, G.R., Steiner, M.D. and Carson, D.E. (1997). Large inflatable deployable antenna flight experiment results. In Proc. 48th International Astronautical Congress,October 6–10, 1997, Turin, Italy, IAF-97–1301.Google Scholar
  8. Gertsma, L.W., Dunn, J.H. and Kempke, E.E. (1965). Evaluation of one type of foldable tube. NASA Lewis Research Center, Cleveland, Ohio, NASA TM-X-1187.Google Scholar
  9. Guest, S.D. and Pellegrino, S. (1996). A new concept for solid surface deployable antennas. Acta Astronautica, 38: 103–113.CrossRefGoogle Scholar
  10. Hoberman, C. (1990). Reversibly expandable doubly-curved truss structure,USA Patent 5234727.Google Scholar
  11. Hoberman, C. (1991). Radial expansion/retraction truss structures,USA Patent 5024031.Google Scholar
  12. IASS (1996). Structural Design of Retractable Roof Structures (Draft 3). International Association for Shells and Space Structures, Madrid.Google Scholar
  13. Love, A.E.H. (1944). A treatise on the mathematical theory of elasticity. Fourth Edition, Dover Publications, New York.MATHGoogle Scholar
  14. MacNaughton, J.D., Weyman, H.N. and Groskopfs, E. (1967). The Bi-stem - A new technique in unfurlable structures. In Proc. Second Aerospace Mechanisms Symposium,University of Santa Clara, California pp 139–145. NASA JPL TM33–355.Google Scholar
  15. Mikulas, M.M. and Cassapakis, C. (1995). Rigidizable structural concepts for the new generation of small spacecraft. In Proc. 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 10–12 April 1995, New Orleans, AIAA Paper no 951277.Google Scholar
  16. Mikulas, M.M. and Thomson, M. (1994). State of the art and technology needs for large space structures. In New and projected aeronautical and space systems, design concepts, and loads, (Edited by A. K. Noor and S. L. Venneri ), pp 173–238. ASME, New York.Google Scholar
  17. Miura, K. and Miyazaki, Y. (1990). Concept of the tension truss antenna. AIAA Journal, 28: 1098–1104.CrossRefGoogle Scholar
  18. Natori, M., Okazaki, K., Sakamaki, M., Tabata, M. and Miura, K. (1986). Model Study of Simplex Masts. In Proc. The Fifteenth International Symposium on Space Technology and Science, Tokyo, Japan pp 489–496.Google Scholar
  19. Rimrott, F.P.J. (1965). Storable tubular extendible member: a unique machine element. Machine Design, 37: 156–163.Google Scholar
  20. Roederer, A.G. and Rahmat-Samii, Y. (1989). Unfurlable satellite antennas: a review. Annales des Telecommunications, 44: 475–488.Google Scholar
  21. Seffen, K.A. and Pellegrino, S. (1999). Deployment dynamics of tape springs. Proceedings of the Royal Society of London, Series A, 455: 1003–1048.CrossRefMATHMathSciNetGoogle Scholar
  22. Thomson, M.W. (1997). The AstroMesh deployable reflector. In Proc. Fifth International Mobile Satellite Conference (IMSC’97),16–18 June 1997, Pasadena, CA pp 393–398. JPL Publication 97–11.Google Scholar
  23. Timoshenko, S.P. and Gere, J.H. (1961). Theory of Elastic Stability, Second edition. McGraw-Hill, New York.Google Scholar
  24. Timoshenko, S.P. and Woinowsky-Krieger, S. (1959). Theory of plates and shells, McGraw-Hill Kogakusha, Tokyo.Google Scholar
  25. Warden, R.M. (1987). Folding, Articulated, Square Truss. In Proc. 21st Aerospace Mechanisms Symposium,L.B. Johnson Space Center, Houston, Texas, 29 April 1987 pp 1–17. NASA-CP2470.Google Scholar
  26. Webb, J.E. and Mauch, H.R. (1969). Deployable Lattice Column,USA Patent 3486279.Google Scholar
  27. You, Z. and Pellegrino, S. (1996). Cable-stiffened pantographic deployable structures. Part 1: Triangular Mast. AIAA Journal, 34: 813–820.CrossRefGoogle Scholar
  28. You, Z. and Pellegrino, S. (1997a). Cable-stiffened pantographic deployable structures. Part 2: Mesh Reflector. A/AA Journal, 35: 1348–1355.Google Scholar
  29. You, Z. and Pellegrino, S. (1997b). Foldable bar structures. International Journal of Solids and Structures, 34: 1825–1847.CrossRefMATHGoogle Scholar
  30. Zanardo, A. (1986). Two-dimensional articulated systems developable on a single or double curvature. Meccanica, 21: 106–111.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Sergio Pellegrino
    • 1
  1. 1.University of CambridgeCambridgeUK

Personalised recommendations