Skip to main content

Seven Lectures on Finite Elasticity

  • Conference paper

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 424))

Abstract

This is the first of two introductory lectures on the equations of nonlinear elasticity theory and some example problems for both general and special material models. The kinematics of finite deformations is discussed by others, so we shall assume knowledge of the polar decomposition theorem and of various related deformation tensors. Relations essential to my presentation, however, will be recorded again as the need arises but without details. We shall begin with Euler’s laws of balance from which the Cauchy stress principle and Cauchy’s laws of motion are obtained. The Cauchy and engineering stress tensors are described. The theory of elasticity of materials for which there exists an elastic potential energy function is known as hyperelasticity. While much of our work emphasizes hyperelasticity theory, some results within the general theory of elasticity that do not require existence of a strain energy function will be noted here and there. The general constitutive equation for hyperelastic materials is derived from the mechanical energy principle. Implications of frame indifference and of material symmetry on the form of the strain energy function are sketched. This leads to constitutive equations for compressible and incompressible, isotropic hyperelastic materials. The empirical inequalities are introduced for use in subsequent applications. Discussion of special constitutive equations is reserved for another lecture.

Acknowledgment: Preparation of these lectures was partially funded by Grant No. CSM-9634817 from the National Science Foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beatty, M. E: Finite amplitude vibrations of a body supported by simple shear springs. J. Appl. Mech., 51 (1984) 361–366.

    Article  MATH  ADS  Google Scholar 

  • Beatty, M. E: Gent-Thomas and Blatz-Ko models for foamed elastomers. In-Mechanics of Cellulosic and Polymeric Materials. AMD-Vol. 99 (MD Vol. 13), Ed. R. W. Perkins, American Society of Mechanical Engineers, New York, 1989, 75–78.

    Google Scholar 

  • Beatty, M. F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues–with examples. Appl. Mech. Rev., 40 (1987) 1699–1734.

    Article  ADS  Google Scholar 

  • Beatty, M. F.: “Introduction to nonlinear elasticity” in Nonlinear Effects in Fluids and Solids. Eds. M. M. Carroll and M. A. Hayes, Plenum Press, New York and London, (1996) 13–104.

    Chapter  Google Scholar 

  • Beatty, M. E, and Jiang, Q.: Compressible, isotropic hyperelastic materials capable of sustaining axisymmetric, anti-plane shear deformations. Contemporary Research in the Mechanics and Mathematics of Materials. Eds. R. C. Batra and M. E Beatty, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain 1996.

    Google Scholar 

  • Beatty, M. F., and Jiang, Q.: On compressible materials capable of sustaining axisymmetric shear deformations. Part 2: Rotational shear of isotropic hyperelastic materials. Quart. J. Mech. Appl. Math., 50 (1997) 212–237.

    MathSciNet  Google Scholar 

  • Beatty, M. F., and Jiang, Q.: On compressible materials capable of sustaining axisymenetric shear deforma-tions. Part 3: Helical shear of isotropic hyperelastic materials. Quart. Appl. Math., 57 (1999) 681–697.

    MathSciNet  MATH  Google Scholar 

  • Beatty, M. E, and Krishnaswamy, S.: A theory of stress-softening in incompressible isotropic materials. J. Mech. Phys. Solids, (2000a).

    Google Scholar 

  • Beatty, M. E, and Krishnaswamy, S.: The Mullins effect in equibiaxial extension. Z. angew. Math. Phys., (2000b).

    Google Scholar 

  • Beatty, M. E, and Stalnaker, D. O.: The Poisson function of finite elasticity. J. Appl. Mech., 53 (1986) 807–813.

    Article  MATH  ADS  Google Scholar 

  • Beatty, M. E, and Zhou, Z.: Finite amplitude and free vibrations of a body supported by incompressible, nonlinear viscoelastic shear mountings. Int. J. Solids Structures, 27 (1991) 355–370.

    Article  Google Scholar 

  • Beatty, M. E. and Zhou, Z.: Simple shearing of an incompressible, viscoelastic quadratic material. Int. J. Solids Structures, 31 (1994) 3201–3215.

    Article  MATH  Google Scholar 

  • Bell, J. F.: Mechanics of Solids, 1. The Experimental Foundations of Solid Mechanics. Flügge’s Handbuch der Physik Vol. Vla/1, Springer-Verlag, New York, 1973.

    Google Scholar 

  • Blatz, P. J.: Application of finite elastic theory to the behavior of rubberlike materials. Rubber Chem. Tech., 36 (1963) 1459–1496.

    Article  Google Scholar 

  • Blatz, P. J., and Ko, W. L.: Application of finite elastic theory to deformation of rubbery materials. Trans. Soc. Rheology, 6 (1962) 223–251.

    Article  ADS  Google Scholar 

  • Bonart, R.: X-ray investigations concerning the physical structure of cross-linking in segmented urethane elastomers. J. Macromol. Sci.–Phys., B2 (1968) 115–138.

    Article  Google Scholar 

  • Ericksen, J. L.: Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. Phys., 34 (1955) 126–128.

    MathSciNet  Google Scholar 

  • Gent, A. N., and Thomas, A. G.: The deformation of foamed elastic materials. J. Appl. Polymer Sci., 1 (1959) 107–113.

    Article  Google Scholar 

  • Gent, A. N., and Thomas, A. G.: Mechanics of foamed elastic materials, Rubber Chem. Tech., 36 (1963) 597–610.

    Article  Google Scholar 

  • Gibson, L. L., and Ashby, M. F.: Cellular Solids: Structure and Properties. Pergamon Press, New York, 1988.

    MATH  Google Scholar 

  • Hagedorn, P.: Non-Linear Oscillations. Oxford, Clarendon Press, 1978.

    Google Scholar 

  • Harwood, J., Mullins, L., and Payne, A.: Stress-softening in rubbers–A review. J. Inst. Rubber Ind., 1 (1967) 17–27.

    Google Scholar 

  • Haughton, D. M.: Circular shearing of compressible elastic cylinders. Quart. J. Mech. Appl. Math., 46 (1993) 471–486.

    Article  MathSciNet  MATH  Google Scholar 

  • Hilyard, N. C.: Mechanics of Cellular Plastics. Applied Science Publishers Ltd., London, 1982.

    Google Scholar 

  • Jiang, Q., and Beatty, M. E: On compressible materials capable of sustaining axisymmetric shear deforma-tions. Part 1: Anti-plane shear of isotropic hyperelastic materials. J. Elasticity, 35 (1995) 75–95.

    MathSciNet  Google Scholar 

  • Jiang, X., and Ogden, R. W.: On azimuthal shear of a circular cylindrical tube of compressible elastic material. Quart. J. Mech. Appl. Math., 51 (1998) 143–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, M. A., and Beatty, M. E: The Mullins effect in uniaxial extension and its influence on the transverse vibration of a rubber string. Cont. Mech. Therm., 5 (1993) 83–115.

    Article  MathSciNet  Google Scholar 

  • Johnson, M. A., and Beatty, M. E: The Mullins effect in equibiaxial extension and its influence on the inflation of a balloon. Int. J. Engng. Sci., 33 (1995) 223–245.

    Article  MATH  Google Scholar 

  • Knowles, J. K.: A note on anti-plane shear for compressible materials in finite elastostatics. J. Austral. Math. Soc., 20 (Series B) (1977) 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  • Knowles, J. K., and Sternberg, E.: On the ellipticity of the equations of nonlinear elastostatics for a special material. J. Elasticity, 5 (1975) 341–361.

    Article  MathSciNet  MATH  Google Scholar 

  • Kryloff, N., and Bogoliuboff, N.: Introduction to Non-Linear Mechanics. Princeton, Princeton University Press, 1947.

    Google Scholar 

  • Mullins, L.: Effect of stretching on the properties of rubber. J. Rub. Res., 16 (1947) 275–289.

    Google Scholar 

  • Mullins, L., and Tobin, N.: Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers. Rubber Chem. Tech., 30 (1957) 551–571.

    Google Scholar 

  • Ogden, R. W., and Roxburgh, D. H.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. Roy. Soc. London, A 455, (1999) 2861–2878.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Polignone, D. A., and Horgan, C. O.: Axisymmetric finite anti-plane shear of compressible nonlinearly elastic circular tubes. Quart. Appl. Math., 50 (1992) 323–341.

    MathSciNet  MATH  Google Scholar 

  • Polignone, D. A., and Horgan, C. O.: Pure azimuthal shear of compressible nonlinearly elastic circular tubes. Quart. Appl. Math., 52 (1994) 113–131.

    MathSciNet  MATH  Google Scholar 

  • Todhunter, I., and Pearson, K.: A History of the Theory of Elasticity and of the Strength of Materials. Dover Publications, New York, 1960.

    MATH  Google Scholar 

  • Zhou, Z.: Creep and stress relaxation of an incompressible viscoelastic material of the rate type. Int. J. Solids Structures, 28 (1991) 617–630.

    Article  MATH  Google Scholar 

  • Zhou, Z.: Creep and recovery of nonlinear viscoelastic materials of the differential type. Int. J. Engng. Sci., 29 (1991) 1661–1672.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Beatty, M.F. (2001). Seven Lectures on Finite Elasticity. In: Hayes, M., Saccomandi, G. (eds) Topics in Finite Elasticity. International Centre for Mechanical Sciences, vol 424. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2582-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2582-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83336-0

  • Online ISBN: 978-3-7091-2582-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics