Fusion of Image Information under Imprecision and Uncertainty: Numerical Methods

  • Isabelle Bloch
Part of the International Centre for Mechanical Sciences book series (CISM, volume 431)


The aim of this paper is to provide an overview of general characteristics of fusion problems, and to highlight their specificities in image information fusion. We restrict the presentation to the problem of information fusion under imprecision and uncertainty, and to numerical methods to account for these imperfections in the fusion process. An illustrative example in brain imaging is sketched.


Image Fusion Data Fusion Fusion Process Image Information Information Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Data Fusion Lexicon, Data Fusion Subpanel of the Joint Directors of Laboratories Technical Panel for C3. F. E. White, Code 4202, NOSC, San Diego, CA, 1991.Google Scholar
  2. 2.
    K.M. Andress and A. C. Kak. Evidence Accumulation and Flow Control in a Hierarchical Spatial Reasoning System. Al Magazine, pages 75–94, 1988.Google Scholar
  3. 3.
    A. Appriou. Formulation et traitement de l’incertain en analyse multi-senseurs. In Quatorzième Colloque GRETSI, pages 951–954, Juan les Pins, 1993.Google Scholar
  4. 4.
    L. Aurdal, X. Descombes, H. Maître, I. Bloch, C. Adamsbaum, and G. Kalifa. Fully Automated Analysis of Adrenoleukodystrophy from Dual Echo MR Images: Automatic Segmentation and Quantification. In Computer Assisted Radiology CAR’95, pages 35–40, Berlin, Germany, June 1995.Google Scholar
  5. 5.
    J. F. Baldwin. Inference for Information Systems Containing Probabilistic and Fuzzy Uncertainties. In L. Zadeh and J. Kacprzyk, editors, Fuzzy Logic and the Management of Uncertainty, pages 353–375. J. Wiley, New York, 1992.Google Scholar
  6. 6.
    Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association, 1988.Google Scholar
  7. 7.
    J. A. Barnett. Computational Methods for a Mathematical Theory of Evidence. In Proc. of 7th IJCAI, pages 868–875, Vancouver, 1981.Google Scholar
  8. 8.
    E. Benoit and L. Foulloy. Capteurs flous multicomposantes: applications à la reconnaissance des couleurs. In Les Applications des Ensembles Flous, pages 167–176, Nîmes, France, October 1993.Google Scholar
  9. 9.
    J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New-York, 1981.MATHGoogle Scholar
  10. 10.
    I. Bloch. Image Information Processing using Fuzzy Sets. In World Automation Congress, Soft Computing with Industrial Applications, pages 79–84, Montpellier, France, May 1996.Google Scholar
  11. 11.
    I. Bloch. Incertitude, imprécision et additivité en fusion de données: point de vue historique. Traitement du Signal, 13 (4): 267–288, 1996.MATHGoogle Scholar
  12. 12.
    I. Bloch. Information Combination Operators for Data Fusion: A Comparative Review with Classification. IEEE Transactions on Systems, Man, and Cybernetics, 26 (1): 52–67, 1996.Google Scholar
  13. 13.
    I. Bloch. Some Aspects of Dempster-Shafer Evidence Theory for Classification of Multi-Modality Medical Images Taking Partial Volume Effect into Account. Pattern Recognition Letters, 17(8):905–919, 1996.Google Scholar
  14. 14.
    I. Bloch. Using Fuzzy Mathematical Morphology in the Dempster-Shafer Framework for Image Fusion under Imprecision. In IFSA’97, pages 209–214, Prague, June 1997.Google Scholar
  15. 15.
    I. Bloch. Fuzzy Relative Position between Objects in Image Processing: a Morphological Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (7): 657–664, 1999.Google Scholar
  16. 16.
    I. Bloch. On Fuzzy Distances and their Use in Image Processing under Imprecision. Pattern Recognition, 32 (11): 1873–1895, 1999.Google Scholar
  17. 17.
    I. Bloch. Fusion of Numerical and Structural Image Information in Medical Imaging in the Framework of Fuzzy Sets. In P. Szczepaniak et al., editor, Fuzzy Systems in Medicine, Series Studies in Fuzziness and Soft Computing, pages 429–447. Springer Verlag, 2000.Google Scholar
  18. 18.
    I. Bloch, L. Aurdal, D. Bijno, and J. Müller. Estimation of Class Membership Functions for Grey-Level Based Image Fusion. In ICIP’97, volume III, pages 268–271, Santa Barbara, CA, October 1997.Google Scholar
  19. 19.
    I. Bloch and A. Hunter (eds). Fusion: General Concepts and Characteristics (to appear). International Journal of Intelligent Systems, 2000.Google Scholar
  20. 20.
    I. Bloch and H. Maître. Fusion de données en traitement d’images: modèles d’information et décisions. Traitement du Signal, 11 (6):435–446, 1994.MATHGoogle Scholar
  21. 21.
    I. Bloch and H. Maître. Fuzzy Mathematical Morphologies: A Comparative Study. Pattern Recognition, 28 (9): 1341–1387, 1995.MathSciNetGoogle Scholar
  22. 22.
    I. Bloch and H. Maître. Data Fusion for Decision Making and Diagnosis in Signal and Image Processing (invited conference). In IEEE International Symposium on Diagnosis for Electrical Machines, pages 148–155, Carry-Le-Rouet, France, 1997.Google Scholar
  23. 23.
    I. Bloch and H. Maître. Data Fusion in 2D and 3D Image Processing: An Overview (invited conference). In X Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI, pages 127–134, Campos do Jordao, Brazil, 1997.Google Scholar
  24. 24.
    I. Bloch and H. Maître. Fusion of Image Information under Imprecision. In B. Bouchon-Meunier, editor, Aggregation and Fusion of Imperfect Information, Series Studies in Fuzziness, pages 189–213. Physica Verlag, Springer, 1997.Google Scholar
  25. 25.
    I. Bloch and H. Maître. On Some Features of Fuzzy Set Theory for Data Fusion (invited conference). In 9th Symposium on Information Control in Manufacturing INCOM’98, Nancy-Metz, France, June 1998.Google Scholar
  26. 26.
    I. Bloch, H. Maître, and M. Anvari. Fuzzy Adjacency between Image Objects. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5 (6): 615–653, 1997.MATHMathSciNetGoogle Scholar
  27. 27.
    B. Bouchon-Meunier and R. R. Yager. Entropy of Similarity Relations in Questionnaires and Decision Trees. In Second IEEE Int. Conf. on Fuzzy Systems, pages 1225–1230, San Francisco, California, March 1993.Google Scholar
  28. 28.
    N. Boujemaa, G. Stamon, J. Lemoine, and E. Petit. Fuzzy Ventricular Endocardium Detection with Gradual Focusing Decision. In 14th IEEE EMBS Conference, pages 1893–1894, Paris, France, 1992.Google Scholar
  29. 29.
    H. Caillol, A. Hillion, and W. Pieczynski. Fuzzy Random Fields and Unsupervised Image Segmentation. IEEE Trans. on Geoscience and Remote Sensing, 31 (4): 801–810, 1993.Google Scholar
  30. 30.
    B. Charroux. Image Analysis: Interpretation-Guided Cooperation between Segmentation Operators (in French). PhD thesis, University Paris X I, January 1996.Google Scholar
  31. 31.
    S. Chauvin. Evaluation of Decision Theories Applied to Data Fusion in Satellite Imaging (in French). PhD thesis, ENST and Nantes University, December 1995.Google Scholar
  32. 32.
    S. Y. Chen, W. C. Lin, and C. T. Chen. Evidential Reasoning based on Dempster-Shafer Theory and its Application to Medical Image Analysis. In SPIE, volume 2032, pages 35–46, 1993.Google Scholar
  33. 33.
    C. C. Chu and J. K. Aggarwal. The Integration of Image Segmentation Maps using Region and Edge Information. IEEE Trans. on Pattern Analysis and Machine Intelligence, 15 (12): 1241–1252, 1993.Google Scholar
  34. 34.
    R. Cooke. Uncertainty in Risk Assessment: A Probrabilist’s Manifesto. Reliability in ENgineering and Systems Safety, 23: 277–283, 1988.Google Scholar
  35. 35.
    R. Cooke. Experts in Uncertainty. Oxford University Press, Oxford, UK, 1991.Google Scholar
  36. 36.
    R Cucka and A. Rosenfeld. Evidence-based Pattern Matching Relaxation. Technical Report CARTR-623, Center of Automation Research, University of Maryland, May 1992.Google Scholar
  37. 37.
    B. V. Dasarathy. Fusion Strategies for Enhancing Decision Reliability in Multi-Sensor Environments. Optical Engineering, 35 (3): 603–616, March 1996.Google Scholar
  38. 38.
    S. Dellepiane, F. Fontana, and G. Vernazza. A Robust Non-Iterative Method for Image Labelling using Context. In IEEE Int. Conf. on Image Processing, volume II, pages 207–211, Austin, Texas, November 1994.Google Scholar
  39. 39.
    S. Dellepiane, G. Venturi, and G. Vernazza. Model Generation and Model Matching of Real Images by a Fuzzy Approach. Pattern Recognition, 25 (2): 115–137, 1992.Google Scholar
  40. 40.
    C. Demko, P. Loonis, and E. H. Zahzah. Isomorphism of Fuzzy Structures: a New Method for Image Classification. In 9th Scandinavian Conference on Image Analysis, pages 297–304, Uppsala, Sweden, June 1995.Google Scholar
  41. 41.
    T. Denceux. A k-nearest Neighbor Classification Rule based on Dempster-Shafer Theory. IEEE Transactions on Systems, Man and Cybernetics, 25 (5): 804–813, 1995.Google Scholar
  42. 42.
    D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York, 1980.MATHGoogle Scholar
  43. 43.
    D. Dubois and H. Prade. A Review of Fuzzy Set Aggregation Connectives. Information Sciences, 36: 85–121, 1985.MATHMathSciNetGoogle Scholar
  44. 44.
    D. Dubois and H. Prade. Possibility Theory. Plenum Press, New-York, 1988.MATHGoogle Scholar
  45. 45.
    D. Dubois and H. Prade. Representation and Combination of Uncertainty with Belief Functions and Possibility Measures. Compu. Intell., 4: 244–264, 1988.Google Scholar
  46. 46.
    D. Dubois and H. Prade. Combination of Information in the Framework of Possibility Theory. In M. Al Abidi et al., editor, Data Fusion in Robotics and Machine Intelligence. Academic Press, 1992.Google Scholar
  47. 47.
    R. K. Varshney (Ed.). Special Issue on Date Fusion. Proceedings of the IEEE, 85(1), 1997.Google Scholar
  48. S. French. Group Consensus Probability Distributions: A Critical Survey. In J. Bernardo et al., editor, Bayesian Statistics, pages 183–201. Elsevier, The Netherlands, 1985.Google Scholar
  49. 49.
    S. J. Gee and A. M. Newman. RADIUS: Automating Image Analysis Through Model-Supported Exploitation. In Image Understanding Workshop, pages 185–196, Washington D.C., 1993.Google Scholar
  50. 50.
    T. Géraud, I. Bloch, and H. Maître. Atlas-guided Recognition of Cerebral Structures in MRI using Fusion of Fuzzy Structural Information. In CIMAF’99 Symposium on Artificial Intelligence, pages 99–106, La Havana, Cuba, March 1999.Google Scholar
  51. 51.
    J. Gordon and E. H. Shortliffe. A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space. Artificial Intelligence, 26: 323–357, 1985.MATHMathSciNetGoogle Scholar
  52. 52.
    L. O. Hall, T. L. Machrzak, and M. S. Silbiger. Obtaining Fuzzy Classification Rules in Segmentation. In IPMU, pages 619–624, Paris, France, 1994.Google Scholar
  53. 53.
    S. Le Hégarat-Mascle, I. Bloch, and D. Vidal-Madjar. Introduction of Neighborhood Information in Evidenve Theory and Application to Data Fusion of Radar and Optical Images with Partial Cloud Cover. Pattern Recognition, 31 (11): 1811–1823, 1998.Google Scholar
  54. 54.
    T. L. Huntsberger, C. Rangarajan, and S. Jayaramamurthy. Representation of Uncertainty in Computer Vision using Fuzzy Sets. IEEE Trans. on Computers, C-35(2): 145–156, 1986.Google Scholar
  55. 55.
    M. C. Jaulent and A. Yang. Application of Fuzzy Pattern Matching to the Flexible Interrogation of a Digital Angiographies Database. In IPMU, pages 904–909, Paris, France, 1994.Google Scholar
  56. 56.
    E. T. Jaynes. Information Theory and Statistical Mechanics. Physical Review, 106 (4): 620–630, 1957.MATHMathSciNetGoogle Scholar
  57. 57.
    A. Kandel, M. Schneider, and G. Langholz. Autonomous Fuzzy Intelligent Systems for Image Processing. In IPMU, pages 613–618, Paris, France, 1994.Google Scholar
  58. 58.
    H. B. Kang and E. L. Walker. Characterizing and Controlling Approximation in Hierarchical Perceptual Grouping. Fuzzy Sets and Sytems, 65: 187–223, 1994.Google Scholar
  59. 59.
    G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty, and Information. Englewood Cliffs, 1988.Google Scholar
  60. 60.
    R. Krishnapuram and J. M. Keller. Fuzzy Set Theoretic Approach to Computer Vision: an Overview. In IEEE Int. Conf on Fuzzy Systems, pages 135–142, San Diego, CA, 1992.Google Scholar
  61. 61.
    R. Krishnapuram, J. M. Keller, and Y. Ma. Quantitative Analysis of Properties and Spatial Relations of Fuzzy Image Regions. IEEE Transactions on Fuzzy Systems, 1 (3): 222–233, 1993.Google Scholar
  62. 62.
    S. Kullback. Information Theory and Statistics. Wiley, New York, 1959.MATHGoogle Scholar
  63. 63.
    R. H. Lee and R. Leahy. Multi-Spectral Classification of MR Images Using Sensor Fusion Approaches. In SPIE Medical Imaging IV: Image Processing, volume 1233, pages 149–157, 1990.Google Scholar
  64. 64.
    T. Lee, J. A. Richards, and P. H. Swain. Probabilistic and Evidential Approaches for Multisource Data Analysis. IEEE Transactions on Geoscience and Remote Sensing, GE-25(3): 283–293, 1987.Google Scholar
  65. 65.
    H. Leung. Neural Networks Data Association with Application to Multiple-Target Tracking. Optical Engineering, 35 (3): 693–700, March 1996.Google Scholar
  66. 66.
    A. De Luca and S. Termini. A Definition of Non-Probabilistic Entropy in the Setting of Fuzzy Set Theory. Information and Control, 20: 301–312, 1972.MATHMathSciNetGoogle Scholar
  67. 67.
    H. Maître. Entropy, Information and Image. In H. Maître and J. Zinn-Justin, editors, Progress in Picture Processing, Les Houches Session LVIII, pages 881–1115. Springer Verlag, 1996.Google Scholar
  68. 68.
    H. Maître, I. Bloch, H. Moissinac, and C. Gouinaud. Cooperative Use of Aerial Images and Maps for the Interpretation of Urban Scenes (invited conference). In Ascona Workshop “Automatic Extraction of Man-Made Objects from Aerial and Space Images ”, pages 297–306, Ascona, Suisse, 1995.Google Scholar
  69. 69.
    G. M. T. Man and J. C. H. Poon. A new Similarity Measurement Method for Fuzzy-Attribute Graph Matching and its Application to Handwritten Character Recognition. In Int. Carnahan Conf. on Security Technology, pages 46–49, Lexington, KY, October 1992.Google Scholar
  70. 70.
    L. Mascarilla. Rule Extraction based on Neural Networks for Satellite Image interpretation. In SPIE Image and Signal Processing for Remote Sensing, volume 2315, pages 657–668, Rome, Italy, 1994.Google Scholar
  71. 71.
    S. Mascle, I. Bloch, and D. Vidal-Madjar. Application of Dempster-Shafer Evidence Theory to Unsupervised Classification in Multisource Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing, 35 (4): 1018–1031, 1997.Google Scholar
  72. 72.
    G. Matheron. La théorie des variables régionalisées et ses applications. Technical Report 5, Ecole des Mines de Paris, Centre de Morphologie Mathématique de Fontainebleau, 1970.Google Scholar
  73. 73.
    D. McKeown, W. A. Harvey, and J. McDermott. Rule-Based Interpretation of Aerial Imagery. IEEE Trans. on Pattern Analysis and Machine Intelligence, 7 (5): 570–585, 1985.Google Scholar
  74. 74.
    M. Ménard, E. H. Zahzah, and A. Shahin. Mass Function Assessment: Case of Multiple Hypotheses for the Evidential Approach. In Europto Conf. on Image and Signal Processing for Remote Sensing, Taormina, Italy, September 1996.Google Scholar
  75. 75.
    N. Milisavljevié, I. Bloch, and M. Acheroy. Characterization of Mine Detection Sensors in Terms of Belief Functions and their Fusion, First Results. In 3rd International Conference on Informatin Fusion–Fusion 2000, volume II, pages ThC3 15–22, Paris, France, jul 2000.Google Scholar
  76. 76.
    N. Milisavljevic, I. Bloch, and M. Acheroy. A First Step towards Modeling and Combining Mine Detection Sensors within Dempster-Shafer Framework. In IC-Al2000, volume II, pages 745–752, Las Vegas, Nevada, jun 2000.Google Scholar
  77. 77.
    N. Milisavljevic, I. Bloch, and M. Acheroy. Modeling, Combining and Discounting Mine Detection Sensors within Dempster-Shafer Framework. In SPIE Detection and Remediation Technologies for Mines and Minelike Targets V, A.C.Dubey, J.F.Harvey, J.T. Broach, R.E.Dugan Eds., volume 4038, pages 1461–1472, 2000.Google Scholar
  78. 78.
    R. E. Neapolitan. A Survey of Uncertain and Approximate Inference. In L. Zadeh and J. Kaprzyk, editors, Fuzzy Logic for the Management of Uncertainty, pages 55–82. J. Wiley, New York, 1992.Google Scholar
  79. 79.
    H. Ogawa. A Fuzzy Relaxation Technique for Partial Shape Matching. Pattern Recognition Letters, 15: 349–355, 1994.Google Scholar
  80. 80.
    S. K. Pal. Fuzzy Set Theoretic Measures for Automatic Feature Evaluation. Information Science, 64: 165–179, 1992.MATHGoogle Scholar
  81. 81.
    J. Pearl. Fusion, Propagation, and Structuring in Belief Networks. Artificial Intelligence, 29: 241–288, 1986.MATHMathSciNetGoogle Scholar
  82. 82.
    W. Pedrycz. Fuzzy Sets in Pattern Recognition: Methodology and Methods. Pattern Recognition, 23 (1/2): 121–146, 1990.Google Scholar
  83. 83.
    A. Perchant, C. Boeres, I. Bloch, M. Roux, and C. Ribeiro. Model-based Scene Recognition Using Graph Fuzzy Homomorphism Solved by Genetic Algorithm. In GbR’99 2nd International Workshop on Graph-Based Representations in Pattern Recognition, pages 61–70, Castle of Haindorf, Austria, 1999.Google Scholar
  84. 84.
    E. Piat. Fusion de croyances dans le cadre combiné de la logique des propositions et de la théorie des probabilités, application à la reconstruction de scène en robotique mobile. PhD thesis, Université de Technologie de Compiègne, 1996.Google Scholar
  85. 85.
    A. Ralescu and R. Hartani. Modeling the Perception of Facial Expressions from Face Photographs. In 10th Fuzzy System Symposium, pages 405–408, Ozaka, Japan, June 1994.Google Scholar
  86. 86.
    H. S. Ranganath and L. C. Chipman. Fuzzy Relaxation Approach for Inexact Scene Matching. Image and Vision Computing, 10 (9): 631–640, 1992.Google Scholar
  87. 87.
    N. S. V. Rao and S. S. Iyengar. Distributed Decision Fusion under Unknown Distributions. Optical Engineering, 35 (3): 617–624, March 1996.Google Scholar
  88. 88.
    J. B. Romine and E. W. Kamen. Modeling and Fusion of Radar and Imaging Sensor Data for Target Tracking. Optical Engineering, 35 (3): 659–673, March 1996.Google Scholar
  89. 89.
    A. Rosenfeld. Fuzzy Digital Topology. Information and Control, 40: 76–87, 1979.MATHMathSciNetGoogle Scholar
  90. 90.
    A. Rosenfeld. The Fuzzy Geometry of Image Subsets. Pattern Recognition Letters, 2: 311–317, 1984.Google Scholar
  91. 91.
    F. Russo and G. Ramponi. An Image Enhancement Technique based on the FIRE Operator. In IEEE Im. Conf. on Image Processing, volume I, pages 155–158, Washington DC, 1995.Google Scholar
  92. 92.
    F. Salzenstein and W. Pieczynski. Unsupervised Bayesian Segmentation using Hidden Fuzzy Markov Fields. In IEEE Int. Conf. on Acoustics, Speech and Signal Procesing, Detroit, Michigan, 1995.Google Scholar
  93. 93.
    G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.Google Scholar
  94. 94.
    J. C. Simon. From Pixels to Features. V-X, North Holland, Amsterdam, 1989.Google Scholar
  95. 95.
    P. Smets. The Combination of Evidence in the Transferable Belief Model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (5): 447–458, 1990.Google Scholar
  96. 96.
    P. Smets. Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem. International Journal of Approximate Reasoning, 9: 1–35, 1993.MATHMathSciNetGoogle Scholar
  97. 97.
    P. Smets. The Transferable Belief Model for Uncertainty Representation. Technical Report. TR/IRIDIA/95–23, IRIDIA, Université Libre de Bruxelles, Bruxelles, Belgium, 1995.Google Scholar
  98. 98.
    Léa Sombé. Raisonnements sur des informations incomplètes en intelligence artificielle. Teknea, Marseille, 1989.Google Scholar
  99. 99.
    H. E. Stephanou and S. Y. Lu. Measuring Consensus Effectiveness by a Generalized Entropy Criterion. In First Conference on Artificial Intelligence Applications, pages 518–523, Denver, December 1984.Google Scholar
  100. 100.
    T. M. Strat. Decision Analysis using Belief Functions. Technical Note 472, SRI, September 1989.Google Scholar
  101. 101.
    D. Y. Suh, R. M. Mersereau, R. L. Eisner, and R. I. Pettigrew. Automatic Boundary Detection on Cardiac Magnetic Resonance Image Sequences for Four Dimensional Visualization of the Left Ventricle. In First Conference on Visualization in Biomedical Computing, pages 149–156, Atlanta GE, 1990.Google Scholar
  102. 102.
    H. Tahani and J. M. Keller. Information Fusion in Computer Vision Using the Fuzzy Integral. IEEE Transactions on System, Man and Cybernetics, 20 (3): 733–741, 1990.Google Scholar
  103. 103.
    S. C. A. Thomopoulos. Sensor Integration and Data Fusion. Journal of Robotics Systems, 7(3): 337–372, 1990.Google Scholar
  104. 104.
    F. Tupin, I. Bloch, and H. Maître. A First Step Towards Automatic Interpretation of SAR Images using Evidential Fusion of Several Structure Detectors. IEEE Transactions on Geoscience and Remote Sensing, 37 (3): 1327–1343, 1999.Google Scholar
  105. 105.
    F. Tupin, H. Maître, J-F. Mangin, J-M. Nicolas, and E. Pechersky. Linear Feature Detection on SAR Images: Application to the Road Network. Technical report, Ecole Nationale Supérieure des Télécommunications (96D006), May 1996.Google Scholar
  106. 106.
    J. van Cleynenbreugel, S. A. Osinga, E Fierens, P. Suetens, and A. Oosterlinck. Road Extraction from Multi-temporal Satellite Images by an Evidential Reasoning Approach. Pattern Recognition Letters, 12: 371–380, 1991.Google Scholar
  107. 107.
    L. Wald. Some Terms of Reference in Data Fusion. IEEE Transactions on Geoscience and Remote Sensing, 37 (3): 1190–1193, 1999.Google Scholar
  108. 108.
    A. Winter, H. Maître, N. Cambou, and E. Legrand. Object Detection Using a Multiscale Probability Model. In IEEE Int. Conf on Image Processing ICIP’96, volume I, pages 269–272, Lausanne, September 1996.Google Scholar
  109. 109.
    R. R. Yager. Connectives and Quantifiers in Fuzzy Sets. Fuzzy Sets and Systems, 40: 39–75, 1991.MATHMathSciNetGoogle Scholar
  110. 110.
    B. Yan. Semiconormed Possibility Integrals and Multi-Feature Pattern Classification. Pattern Recognition, 26 (12): 1855–1862, 1993.MATHGoogle Scholar
  111. 111.
    L. A. Zadeh. Fuzzy Sets. Information and Control, 8: 338–353, 1965.MATHMathSciNetGoogle Scholar
  112. 112.
    L. A. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems, 1:3–28, 1978.Google Scholar
  113. 113.
    E. Zahzah. Contribution à la représentation des connaissances et à leur utilisation pour l’interprétation automatique des images satellites. Thèse de doctorat, Université Paul Sabatier, Toulouse, 1992.Google Scholar
  114. 114.
    R. Zwick, E. Carlstein, and D. V. Budescu. Measures of Similarity Among Fuzzy Concepts: A Comparative Analysis. International Journal of Appmximate Reasoning, 1: 221–242, 1987.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Isabelle Bloch
    • 1
  1. 1.Ecole Nationale Supérieure des Télécommunications - TSI departmentCNRS URA 820ParisFrance

Personalised recommendations