Possibility Theory in Information Fusion

  • Didier Dubois
  • Henri Prade
Part of the International Centre for Mechanical Sciences book series (CISM, volume 431)


Possibility theory and the body of aggregation operations from fuzzy set theory provide some tools to address the problem of merging information coming from several sources. Possibility theory is a representation framework that can model various kinds of information items: numbers, intervals, consonant random sets, special kind of probability families, as well as linguistic information, and uncertain formulae in logical settings. The possibilistic approach to fusion is general enough to encompass logical modes of combination (conjunctive and disjunctive) as well as fusion modes used in statistics. The choice of a fusion mode depends on assumptions on whether all sources are reliable or not, and can be based on conflict analysis. This general framework allows to import inconsistency handling methods, inherited from logic, into numerical fusion problems. Quantified, prioritized and weighted fusion rules are described, as well as fusion under a priori knowledge. It is shown that the possibilistic setting is compatible with the Bayesian approach to fusion, the main difference being the presupposed existence, or not, of prior knowledge. The approach applies to sensor fusion, aggregation of expert opinions as well as the merging of databases especially in case of poor, qualitative information.


Data Fusion Fusion Rule Information Fusion Belief Function Possibility Distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abidi M.A. and Gonzalez R.C., eds. (1992) Data Fusion in Robotics and Machine Intelligence. Academic Press.Google Scholar
  2. Arbuckle T. D., Lange E., Iwamoto T., Otsu N. and Kyuma K. (1995). Fuzzy information fusion in a face regognition system, Int. J. Uncertainty, Fuzziness and Knowledge-based Systems, 3, 217–246.CrossRefGoogle Scholar
  3. Barat C., Kraus S., Minker J. and Subrahmanian (1992). Combining knowledge bases consisting in first order theories, Computational Intelligence, 8 (1), 45–71.CrossRefGoogle Scholar
  4. Benferhat S., Dubois D. and Prade H. (1997). From semantic to syntactic approaches to information combination in possibilistic logic, Aggregation and Fusion of Imperfect Information (Bouchon-Meunier B., Ed.), Physica-Verlag, Heidelberg, Germany, 141–161.Google Scholar
  5. Benferhat S., Dubois D. and Prade H. (2000) An overview of possibilistic logic and its application to nonmonotonic reasoning and data fusion. In Della Riccia, G, Kruse R. Lenz, H., Eds, Computational Intelligence and Data Mining, CISM Courses and Lectures, vol. 408, Springer Verlag, Berlin, 69–93.Google Scholar
  6. Bezdek J., Keller J., Krishnapuram R. and Pal N. R. (1999). Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, The Handbooks of Fuzzy Sets Series, Kluwer Acad. Publ., Dordrecht.Google Scholar
  7. Bezdek J. and Sutton M. A. (1999). Image processing in medicine, In Zimmermann H.-.J., Ed., Applications of Fuzzy Sets, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  8. Bloch I., Sureda F., Petiot C. and Herment A. (1997). Fuzzy modelling and fuzzy mathematical morphology applied to 3D reconstruction of blood vessels by multimodality data fusion, In Dubois D., Prade H., Yager R., eds, Fuzzy Information Engineering, John Wiley, 93–110.Google Scholar
  9. Boldrin L. and Sossai C. (1995). An algebraic semantics for possibilistic logic, Proc of the Eleventh Conference on Uncertainty in Artifucial Intelligence, Morgan Kaufmann, San Francisco, CA, 27–35.Google Scholar
  10. Bouchon-Meunier B., Ed. (1997). Aggregation and Fusion of Imperfect Information,PhysicaVerlag.Google Scholar
  11. Buchanan B. G. and Shortliffe E. H. (1984). Rule-Based Expert Systems — The MYCIN Experiments of the Stanford Heuristic Programming Project,Addison-Wesley.Google Scholar
  12. Cooke R. M. (1991). Experts in Uncertainty,Oxford University PressGoogle Scholar
  13. De Cooman G., Aeyels D. (1999). Supremum-preserving upper probabilities. Information Sciences, 118, 173–212.CrossRefMATHMathSciNetGoogle Scholar
  14. Delmotte F. and Borne P. (1998). Modeling of reliability with possibility theory, IEEE Trans. on Systems Man Cybern., A, 28, 78–88.CrossRefGoogle Scholar
  15. Denoeux T. (2000) Modeling vague beliefs using fuzzy-valued belief structures, Fuzzy Sets and Systems, 116, 167–200.CrossRefMATHMathSciNetGoogle Scholar
  16. Deveughèle S. and Dubuisson B. (1993). Using possibility theory in perception: An application in artificial vision, Proc. of the Second IEEE International Conference on Fuzzy Systems, San Francisco, CA, March 28-April 1st, 821–826.Google Scholar
  17. Deveughèle S. and Dubuisson B. (1995). Adaptive aggregation: decomposing before combining, Proc. of the Fourth IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 1589–1596.Google Scholar
  18. Dubois D. Fargier H. and Prade H. (2000) Multiple source information fusion: a practical inconsistency toleran approach. Proc. Eigth International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, Vol. Il, 1047–1054Google Scholar
  19. Dubois D., Moral S. and Prade H. (1997). A semantics for possibility theory based on likelihoods, J. of Mathematical Analysis and Applications, 205, 359–380.CrossRefMATHMathSciNetGoogle Scholar
  20. Dubois, D. and H. Prade. (1985). Evidence measures based on fuzzy information. Automatica 21 (5): 547–562.CrossRefMATHMathSciNetGoogle Scholar
  21. Dubois D. and Prade H. (1986). Weighted minimum and maximum operations in fuzzy set theory, Information Sciences, 39, 205–210.CrossRefMATHMathSciNetGoogle Scholar
  22. Dubois D. and Prade H. (1988a). Representation and combination of uncertainty with belief functions and possibility measures, Computational Intelligence., 4, 244–264.CrossRefGoogle Scholar
  23. Dubois D. and Prade H. (1988b). Possibility Theory - An Approach to the Computerized Processing of Uncertainty, Plenum Press, New York.MATHGoogle Scholar
  24. Dubois D. and Prade H. (1988c). Default reasoning and possibility theory, Artificial Intelligence, 35, 243–257.CrossRefMATHMathSciNetGoogle Scholar
  25. Dubois D. and Prade H. (1989). Fuzzy sets, probability and measurement, Europ. J. of Operational Research, 40, 135–154.CrossRefMATHMathSciNetGoogle Scholar
  26. Dubois D. and Prade H. (1992a). Combination of fuzzy information in the framework of possibility theory, Data Fusion in Robotics and Machine Intelligence (Abidi M.A. and Gonzalez R.C., eds.), 481–505. Academic Press.Google Scholar
  27. Dubois D. and Prade H. (1992b). When upper probabilities are possibility measures, Fuzzy Sets and Systems, 49, 65–74.CrossRefMATHMathSciNetGoogle Scholar
  28. Dubois D. and Prade H. (1992c). On the combination of evidence in various mathematical frameworks, In Flamm J. and Luisi T., eds., Reliability Data Collection and analysis Kluwer Acad. Publ., Dordrecht, 213–242.Google Scholar
  29. Dubois D. and Prade H. (1994). Possibility theory and data fusion in poorly informed environments, Control Engineering Practice, 2 (5), 811–823.CrossRefGoogle Scholar
  30. Dubois D., Prade H. and Sandri S. (1993). On possibility/probability transformations, In Lowen R. and Lowen M., eds., Fuzzy Logic: State of the Art, Kluwer Academic Publ., 103–112.Google Scholar
  31. Dubois D., Prade H. and Testemale C. (1988). Weighted fuzzy pattern matching, Fuzzy Sets and Systems, 28, 313–331.CrossRefMATHMathSciNetGoogle Scholar
  32. Dubois D., Prade H. and Yager R. R. (1999). Merging fuzzy information, In Bezdek J.C., Dubois D., Prade H., Eds., Fuzzy Sets in Approximate Reasoning and Information Systems, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht, 335–401.CrossRefGoogle Scholar
  33. Edwards W. F. (1972). Likelihood, Cambridge University Press, Cambridge, U.K.MATHGoogle Scholar
  34. Fodor J. and Yager R. (2000). Fuzzy set-theoretic operators and quantifiers, In Fundamentals of Fuzzy Sets, Dubois D. and Prade H., eds., The Handbook of Fuzzy Sets Series, Kluwer Academic Publ., Dordrecht, 125–193CrossRefGoogle Scholar
  35. Fukuda T., Shimojida K., Fumihito A. and Matsuura H. (1993). Multisensor integration systems based on fuzzy inference and neural network, Information Sciences, 71, 27–41CrossRefGoogle Scholar
  36. Gebhardt J. and Kruse R. (1998). Parallel combination of information sources, In Dubois D. and Prade H., Eds, Belief Change, Vol. 3 in the Handbook of Defeasible Reasoning and Uncertainty Management Systems, Kluwer Acad. Publ., Dordrecht, 393–440.Google Scholar
  37. Kaufmann A. (1988). Theory of expertons and fuzzy logic. Fuzzy Sets and Systems, 28, 295–304.CrossRefMATHMathSciNetGoogle Scholar
  38. Kuncheva L. and Krishnapuram R. (1996). A fuzzy consensus operator, Fuzzy Sets and Systems, 79, 347–356.CrossRefMathSciNetGoogle Scholar
  39. Lasserre V., Mauris G. and Foulloy L. (1998). A simple modelisation of measurement uncertainty: the truncated triangular possibility distribution, Proc Seventh International Conference. on Information Processing and Management of Uncertainty in Knowledge-based Systems, Paris, Editions Medicales et Scientifiques, 10–17.Google Scholar
  40. Lehrer K, Wagner C.(1981) Rational Consensus in Science and Society,Reidel, Dordrecht. Lopez-Sanchez M., Lopez de Mantaras R. and Sierra C. Incremental map generation by low-cost robots based on possibility/necessity grids, Proc of the Thirteenth Conference on Uncertainty in Artificial Intelligence,Morgan Kaufmann, 351–357.Google Scholar
  41. Mauris G., Benoit E. and Foulloy L. Fuzzy linguistic methods for the aggregation of complementary sensor information, In Bouchon-Meunier B., Ed., Aggregation and Fusion of Imperfect Information, Physica-Verlag, Heidelberg, Germany, 214–230.Google Scholar
  42. Mundici D. (1992). The logic of Ulam games with lies, Knowledge, In Bicchieri C., Dalla Chiara M., eds., Belief and Strategic Interaction, Cambridge Univ. Press, 275–284.CrossRefGoogle Scholar
  43. Nifle A. and Reynaud R. (1997). Classification de comportements fondée sur l’occurrence d’événements en théorie des possibilités, Traitement du Signal, 14, 523–534.MATHGoogle Scholar
  44. Pannerec T., Oussalah M., Maaref H. and Barret. C. (1998). Absolute localization of a miniature mobile robot using heterogeneous sensors: comparison between Kalman filter and possibility theory method, Proc. IEEE Symposium on Robotics and Cybernetics, CESA’98, Tunis.Google Scholar
  45. Poloni M., Ulivi G. and Vendittelli M. (1995). Fuzzy logic and autonomous vehicles: Experiments in data fusion, Fuzzy Sets and Systems, 69, 15–27.CrossRefGoogle Scholar
  46. Poole D. L. (1985). On the comparison of theories: preferring the most specific explanation, Proc. 9th Int. Joint Conf. on Artif. Int.lligence, Los Angeles, 465–474.Google Scholar
  47. Rescher N., Manor R. (1970) On inference from inconsistent premises. Theory and Decision, 1, 179–219.CrossRefMATHGoogle Scholar
  48. Roux L. and Desachy J. (1997). Multisources information fusion application for satellite image classification, In: Dubois D., Prade H. and Yager R.R., eds, Fuzzy Information Engineering., John Wiley, 111–121.Google Scholar
  49. Sandri S., Dubois D. and Kalfsbeek H. (1995). Elicitation, assessment and pooling of expert judgement using possibility theory. IEEE Tranactions on Fuzzy Systems, 3, 313–335CrossRefGoogle Scholar
  50. Shafer G. (1976). A Mathematical Theory of Evidence, Princeton Univ. Press, Princeton, NJ.Google Scholar
  51. Yager R. R. (1984). Approximate reasoning as a basis for rule-based expert systems, IEEE Trans. On Systems, Man and Cybernetics, 14, 636–643.CrossRefMATHMathSciNetGoogle Scholar
  52. Yager R. R. (1985). Aggregating evidence using quantified statements, Information Sciences, 36, 179–206.CrossRefMATHMathSciNetGoogle Scholar
  53. Yager R. R. (1991). Non-monotonic set-theoretic operators, Fuzzy Sets and Systems, 42, 173–190.CrossRefMATHMathSciNetGoogle Scholar
  54. Yager R. R. (1992). On the specificity of a possi-bility distribution, Fuzzy Sets and Systems., 50, 279–292.CrossRefMATHMathSciNetGoogle Scholar
  55. Yen J. (1992). Computing generalized belief functions for continuous fuzzy sets, International Journal of Approximate Reasoning, 6, 1–31.CrossRefMATHMathSciNetGoogle Scholar
  56. Zadeh L.A. (1965). Fuzzy sets, Information Control, 8, 338–353.CrossRefMATHMathSciNetGoogle Scholar
  57. Zadeh L. A. (1978). Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, I, 3–28.CrossRefMATHMathSciNetGoogle Scholar
  58. Zadeh L.A. (1979). A theory of approximate reasoning, In J. Hayes J.E., Michie D. and Mikulich L.I., eds., Machine Intelligence, Vol. 9, Elsevier, New York, 149–194.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Didier Dubois
    • 1
  • Henri Prade
    • 1
  1. 1.IRIT-CNRSUniversité Paul SabatierToulouseFrance

Personalised recommendations