Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 426))

  • 272 Accesses

Abstract

This chapter initially presents a brief review of the different types of constitutive soil models used in geomechanics and illustrates the implementation of a typical isotropic model. The constitutive behaviour of a double-hardening isotropic model is also highlighted as part of this review. The majority of the chapter is however concerned with the description and implementation of a multi-surface kinematic elastoplastic constitutive soil model into a finite element program. The calibration of the model to a particular sand under monotonic and cyclic loading and the results of typical boundary values problems under monotonic and dynamic loading are presented. The ability of the model to simulate earthquake induced liquefaction, through work published from the VELACS project, is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anandarajah, A. (1994). Procedures for elasto-plastic liquefaction modeling of sands. J.of Engineering Mechanics, Vol 120, No. 7, 1563–1587.

    Article  Google Scholar 

  • Arulanandan, K. and Scott, R. (1994). Verification of numerical procedures for the analysis of soil liquefaction problems. Balkema, Rotterdam.

    Google Scholar 

  • Arulmoli, K., Muraleetharan, K.K., Hossain, M.M. and Fruth, L.S. (1992) VELACS, Verification of liquefaction analysis by centrifuge studies, laboratory testing program, soil data report, The Earth Technology Corporation, 13900 Alton Parkway, Suite 120, Irvine, CA.

    Google Scholar 

  • Been, K. and Jefferies, M.G. (1985). A state parameter for sands. Geotechnique 35, No. 2, 99–112.

    Article  Google Scholar 

  • Bolton, M.D. and Lau C.K. (1993). Vertical bearing capacity factors for circular and strip footings on Mohr-Coulomb soil. Canadian Geotechnical Engineering Journal, 30, 1024–1033.

    Article  Google Scholar 

  • de Borst, R. & Vermeer, P.A. (1984). Possibilities and limitations of finite elements for limit analysis, Geotechnique, 34, No. 2, 199–210.

    Article  Google Scholar 

  • Casagrande, A. (1936) Characteristics of cohesionless soils affecting the stability of slopes and earth fills, J. Boston Soc. Civ. Engrs., 56, 257–276.

    Google Scholar 

  • Crouch, R.S. & Wolf, J.P. (1994). Unified 3D critical state bounding-surface plasticity model for soils incorporating continuous plastic loading under cyclic paths. Part I: Constitutive relations. Int. J. for Num. Meth. in Geomech.,Vol. 18, No. 11, 735–758.

    Google Scholar 

  • Crouch, R.S. & Wolf, J.P. (1994). Unified 3D critical state bounding-surface plasticity model for soils incorporating continuous plastic loading under cyclic paths. Part II: Calibration and simulations. Int. J for Num. Meth. in Geomech.,Vol. 18, No. 11, 759–784.

    Google Scholar 

  • Cundall, P.A. and Strack, O.D.L. (1979). A discrete numerical model for granular assemblies. Geotechnique 29, No. 1, 47–65.

    Article  Google Scholar 

  • Dafalias, Y.F. and Popov, E.P. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica 21, 173–192.

    Article  MATH  Google Scholar 

  • Dafalias, Y.F. (1994). Overview of constitutive models used in VELACS. Verification of numerical procedures for the analysis of soil liquefaction problems. Balkema, Rotterdam, 1293–1303.

    Google Scholar 

  • Finn, W.D.L., Lee, K.W. and Martin, G.R. (1977). An effective stress model for liquefaction. Journal Geotechnical Engineering Division 103, ASCE, 517–533.

    Google Scholar 

  • Frydman, S. and Burd, H.J. (1997) Numerical studies of bearing capacity factor N i. J. Geo. Eng., ASCE, Vol 123, No. 1, 20–29 (1997).

    Article  Google Scholar 

  • Griffiths, D.V. (1982) Computation of bearing capacity factors using finite elements, Geotechnique, 32, No. 3, 195–202.

    Article  Google Scholar 

  • Griffiths, D.V. (1990). Failure criteria interpretation based on Mohr-Coulomb friction, J. Geo. Eng., ASCE, Vol 116, No. 6, 986–999.

    Google Scholar 

  • Hardin, B.O. and Hardy, W.L. (1968). Vibration modulus of normally consolidated clay, J. of Soil Mech. Div., ASCE, SM 2, 353–369.

    Google Scholar 

  • Hicks, M. (1990) Numerically modelling the stress strain behaviour of soils, Doctural Thesis, University of Manchester.

    Google Scholar 

  • Hicks, M. (1995). A computer algorithm for solving boundary value problems using the double-hardening constitutive law MONOT: I. Algorithm development, hit. J. for Num. Meth. in Geomech.,Vol. 19, 1–27 (1995).

    Google Scholar 

  • Hicks, M. (1995). A computer algorithm for solving boundary value problems using the double-hardening constitutive law MONOT: II. Algorithm validation, Int. J. for Num. Meth. in Geomech.,Vol. 19, 29–57 (1995).

    Google Scholar 

  • de Josselin de Jong, G. (1976) Rowe’s stress-dilatancy relation based on friction, Geotechnique 26, No. 3, 527–534.

    Article  Google Scholar 

  • Inel, S., Roth, W.H. and de Rubertis, C. (1993). Nonlinear dynamic effective-stress analysis of two case histories. 3rd Int. Conf. On Case Histories in Geot. Eng., St Louis, MO, June.

    Google Scholar 

  • Iwan, W.D. (1967). On a class of models for the yielding behaviour of continuous and composite systems. ASME J. Appl. Mech. 34, 6–12

    Google Scholar 

  • Jefferies, M.G. (1993). Nor-sand: a simple critical state model for sand. Geotechnique 43, 91–103.

    Article  Google Scholar 

  • Kaddouri, A. and Woodward, P.K. (1998). Advanced numerical modelling of earthquake induced liquefaction. Proceedings 6 th Conference of SECED on Seismic Design Practice into the Next Century: University of Oxford, UK. 213–218.

    Google Scholar 

  • Kaddouri, A. (2000). Title to be set. Doctural Thesis, Heriot-Watt University.

    Google Scholar 

  • Krieg, R.D. (1975). A practical two-surface plasticity theory. ASME J Appl. Mech. 42, 641–646.

    Article  Google Scholar 

  • Lade, P.V. and Duncan, J.M. (1975). Elasto-plastic stress-strain theory for cohesionless soils, J. Geotech. Eng. Div. ASCE. 107, GT10, 1037–1053.

    Google Scholar 

  • Lade, P.V. (1977). Elasto-plastic stress strain theory for cohesionless soil with curved yield surfaces, Int J. Solids Struct. 13, 1019–1035.

    Article  MATH  Google Scholar 

  • Lade, P.V. (1979). Three-dimensional stress-strain behaviour and modelling of soils, Bochum, Ruhr-Univ., Schrenreihe des Inst. F. Grundb., Wasserwesen and Verkehrswesen, Serie Grundbau, Heft 4, Aug.

    Google Scholar 

  • Lindenberg, J. and Koning, H.L. (1981). Critical density of sand, Geotechnique, 31, No. 2, 231–245.

    Article  Google Scholar 

  • Manoharan, N. and Dasgupta, S.P. (1995). Bearing capacity of surface footings by finite elements, Comp. Struct, 54, No. 4, 563–586.

    Article  MATH  Google Scholar 

  • Manzari, M.T. and Dafalias, Y.F. (1997). A critical state two-surface plasticity model for sands. Geotechnique 47, No. 2, 255–272.

    Article  Google Scholar 

  • Molenkamp, F. (1981). Elasto-plastic double hardening model MONOT, LGM Report CO-218595, Delft Geotechics.

    Google Scholar 

  • Molenkamp, F. (1982) Kinematic model for alternating loading ALTERNAT, LGM Report CO-218598, Delft Geotechnics.

    Google Scholar 

  • Molenkamp, F. (1986). Limits to the Jaumann stress rate, Int. J. for Num. Meth. in Geomech.,Vol. 10, 151–176.

    Google Scholar 

  • Molenkamp, F. (1987). Elasto-plastic model for the simulation of liquefaction under alternating loading, Workshop on constitutive laws for the analysis of fill retention structures, Workshop Report, Department of Civil Engineering, Univeristy of Ottawa, July, 60–194.

    Google Scholar 

  • Molenkamp, F. (1988). A simple model for isotropic non-linear elasticity of frictional materials, Int. J. for Num. Meth. in Geomech.,Vol. 12, 467–475.

    Google Scholar 

  • Molenkamp, F. (1990) Reformulation of ALTERNAT to minimise numerical drift due to cyclic loading, University of Manchester Internal Report. UK.

    Google Scholar 

  • Molenkamp, F. (1992). Application of non-linear elastic model, Int. J. for Num. Meth. in Geomech.,Vol. 16, 131–150.

    Google Scholar 

  • Mroz, Z. (1967). On the description of anisotropic workhardening. J. Mech. Physics Solids 15, 6–12.

    Google Scholar 

  • Naylor, D.J. (1974). Stresses in nearly incompressible materials by finite elements with applications to the calculation of excess pore pressures, Int. J. Num. Meth. Eng., 8, 443–460.

    Article  MATH  Google Scholar 

  • Newmark, N.M. (1965). Effects of earthquakes on dams and embankments, Geotechnique 15, No. 2, 139–160.

    Article  Google Scholar 

  • Pande, G.N. and Sharma, K.C. (1983). Multi-laminate model of clays — a numerical evaluation of the influence of rotation of the principal stress axes. Int. J. Num. Anal Meth. Geomechanics. 7, 397–418.

    Article  MATH  Google Scholar 

  • Poulos, S.J. (1981). The steady state of deformation, J. of Geotech. Eng., ASCE, 107, 5, 553–562.

    Google Scholar 

  • Prevost, J.H. (1977). Mathematical modelling of monotonic and cyclic undrained clay behaviour, Int. J for Num. Meth. in Geomech.,Vol. 1, No. 2, 195–216.

    Google Scholar 

  • Prevost, J.H. (1982) Two-surface vs multi-surface plasticity theories, Int. J. for Num. Meth. in Geomech.,Vol. 6, 323–338.

    Google Scholar 

  • Prevost, J.H. (1985). A simple plasticity theory for frictional soils. Soil Dynamics and Earthquake Engineering, 4, 9–17.

    Article  Google Scholar 

  • Prevost, J.H. & Keane, C.M. (1990). Multimechanism elasto-plastic model for soils. J of Engineering Mechanics, Vol. 116, No. 9, 1924–1945.

    Article  Google Scholar 

  • Rowe, P.W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. Royal Soc., Vol. 269, 500–527.

    Article  Google Scholar 

  • Rowe, P.W. (1971). Theoretical meaning and observed values of deformation parameters for soil, Proc. Roscoe Mem. Symp., 18, 143–194.

    Google Scholar 

  • Saada, A. and Bianchini, G. (1988). Constitutive equations for granular non-cohesive soils. Balkema, Rotterdam.

    Google Scholar 

  • Schofield, A.N. and Wroth, C.P. (1968). Critical state soil mechanics, McGraw-Hill, London.

    Google Scholar 

  • Simonini, P. (1993) Influence of relative density and stress level on the bearing capacity of sands, Int. J for Num. Meth. in Geomech.,Vol. 17, 871–890.

    Google Scholar 

  • Smith, I.M. and Griffiths, D.V. (1988). Programming the finite element method, 2rd Edn, Wiley, Chichester.

    MATH  Google Scholar 

  • Tatsuoka, F., Iwasaki, T., Yoshida, S., Fukushima, S. and Sudo, H. (1979). Shear modulus and damping by drained tests on clean sand specimens, reconstituted by various methods, Soils and Foundations, Vol. 19, No. 1, 39–54.

    Article  Google Scholar 

  • Thorton, C. (1989). A direct approach to micromechanically based continuum models for granular material. In: Satake M., ed., Mechanics of Granular Materials, Report of ISSMFE Technical Committee on Mechanics of Granular Materials, Japanese Society of Soil Mechanics and Foundation Engineering, 145–150.

    Google Scholar 

  • Vermeer, P.A. `Formulation and analysis of sand deformation problems’. PhD Thesis, Delft University of Technology, 1980.

    Google Scholar 

  • Woodward, P.K. (1993). Earthquake engineering and advanced constitutive modelling in geomechanics, by finite elements, Doctural Thesis, University of Manchester (1993).

    Google Scholar 

  • Woodward, P.K. (1995). Application of a kinematic elasto-plastic soil model to monotonic and cyclic loading, Proc the Sixth Int. Con. on Civil and Struct. Eng. Comp., St Johns College Cambridge, England 229–237.

    Google Scholar 

  • Woodward, P.K. and Griffiths, D.V. (1998) Observations on the computation of the bearing capacity factor N, byfinite elements, Geotechnique, 48, No. 1, 137–141.

    Article  Google Scholar 

  • Woodward, P.K. and Molenkamp, F. (1999). Application of an advanced multi-surface kinematic constitutive soil model, Int. J. for Num. Meth. in Geomech.,Vol. 23, 1995–2043.

    Google Scholar 

  • Woodward, P.K. and Nesnas, K. (2000) Analysis the behaviour of footings on sand using an advanced constitutive soil model. EPSRC Final Research Report, UK.

    Google Scholar 

  • Zienkiewicz, O.C., Valliappan, S. and King, I.P. (1969). Elasto-plastic solutions of engineering problems. Initial-stress, finite element approach, Int. J. for Num. Meth. in Geomech.,1, 75–100.

    Google Scholar 

  • Zienkiewicz, O.C. and Chang, C.T. (1978). Nonlinear seismic response and liquefaction. Int J Num. Anal. Meth. In Geomechanics,2, 381–404.

    Google Scholar 

  • Zienkiewicz, O.C., Leung, K.H. and Pastor, M. (1985). A simple model for transient soil loading in earthquake analysis. I: Basic model and its application, and II: Non-asociative models for sands. Int. J. Num. Anal. Meths. Geomechanics. 2, 381–404.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Woodward, P.K. (2001). Advanced Numerical Modelling of Granular Soils. In: Griffiths, V.D., Gioda, G. (eds) Advanced Numerical Applications and Plasticity in Geomechanics. International Centre for Mechanical Sciences, vol 426. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2578-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2578-6_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83337-7

  • Online ISBN: 978-3-7091-2578-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics