Skip to main content

Stability analysis of highly variable soils by elasto-plastic finite elements

  • Chapter
Advanced Numerical Applications and Plasticity in Geomechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 426))

Abstract

Geotechnical analyses involving bearing capacity, excavation and slope stability of highly variable soils have been performed using elasto-plastic finite elements. The finite element analyses are validated against well-known solutions where possible, before being applied to more complicated problems in which the classical approaches are at best inconvenient, and at worst may lead to misleading results. The types of heterogeneity considered in this work include simple layering due to stratification, water table effects, voids due to excavation and variability based on a statistical description of the material properties. In the statistical approach, the results lead to a probabilistic interpretation of design parameters that have traditionally been dealt with using “average” soil properies in conjunction with a “Factor of Safety”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • L.W. Abramson, T.S. Lee, S. Sharma, and G.M. Boyce. Slope stability and stabilisation methods. John Wiley and Sons, 1995.

    Google Scholar 

  • A. Asaoka and D.A. Grivas. Spatial variability of the undrained strength of clays. J Geotech Eng, ASCE, 108 (5): 743–756, 1982.

    Google Scholar 

  • A.W. Bishop. The use of the slip circle in the stability analysis of slopes. Géotechnique, 5 (1): 717, 1955.

    Article  Google Scholar 

  • A.W. Bishop and N.R. Morgenstern. Stability coefficients for earth slopes. Géotechnique, 10: 129–150, 1960.

    Article  Google Scholar 

  • R.I. Borja, S.R. Lee, and R.B. Seed. Numerical simulation of excavation in elasto-plastic soils. Int J Numer Anal Methods Geomech, 13 (3): 231–249, 1989.

    Article  MATH  Google Scholar 

  • J.D. Brown and G.G. Meyerhof. Experimental study of bearing capacity in layered clays. In Proc 7th Int Conf Soil Mech Found Eng, pages 45–51. 1969.

    Google Scholar 

  • P.T. Brown and J.R. Booker. Finite element analysis of excavation. Comput Geotech, 1: 207–220, 1985.

    Article  Google Scholar 

  • S.J. Button. The bearing capacity of footings on a two-layer cohesive sub-soil. In Proc 3rd Int Conf Soil Mech Found Eng, pages 332–335. 1953.

    Google Scholar 

  • A.R. Calderon. The application of back-analysis and numerical modeling to design a large pushback in a deep open pit mine. Master’s thesis, Department of Mining Engineering, Colorado School of Mines, 2000.

    Google Scholar 

  • W.F. Chen. Limit analysis and soil plasticity. Elsevier, Amsterdam, 1975.

    MATH  Google Scholar 

  • R.N. Chowdhury. Discussion on stability analysis of embankments and slopes. J Geotech Eng, ASCE, 107: 691–693, 1981.

    Google Scholar 

  • R.W. Clough and R.J. Woodward. Analysis of embankment stresses and deformations. J Soil Mech Found Div, ASCE, 93: 529–549, 1967.

    Google Scholar 

  • B.F. Cousins. Stability charts for simple earth slopes. J Geotech Eng, ASCE, 104 (2): 267–279, 1978.

    Google Scholar 

  • G. de Marsily. Spatial variability of properties in porous media: A stochastic approach. In: J. Bear and M.Y. Corapcioglu, eds, Advances in Transport Phenomena in Porous Media, pages 719–769. NATO Advanced Study Institute on Fundamentals of Transport Phenomena in Porous Media, Dordrecht, Boston, MA, 1985.

    Google Scholar 

  • D.J. DeGroot and G.B. Baecher. Estimating autocovariance of in-situ soil properties. J Geotech Eng, ASCE, 119 (1): 147–166, 1993.

    Google Scholar 

  • J.M. Duncan. State of the Art: Limit equilibrium and finite-element analysis of slopes. J Geotech Geoenv Eng, ASCE, 122 (7): 577–596, 1996.

    Google Scholar 

  • J.M. Duncan. Factors of safety and reliability in geotechnical engineering. J Geotech Geoenv Eng, ASCE, 126 (4): 307–316, 2000.

    Google Scholar 

  • J.M. Duncan and P. Dunlop. Slopes in stiff fissured clays and soils. J Soil Mech Found Div, ASCE, 95 (SM5): 467–492, 1969.

    Google Scholar 

  • J.M. Duncan and K.S. Wong. STABR: A computer program for slope stability analysis with circular slip surfaces. Technical report, Virginia Tech, 1985. Department of Civil Engineering.

    Google Scholar 

  • W. Fellenius. Calculation of the stability of earth dams. In Proceedings of the 2nd Congress on Large Dams, Washington, D.C., volume 4. U.S. Government Printing Office, 1936.

    Google Scholar 

  • G.A. Fenton. Simulation and analysis of random fields. PhD thesis, Department of Civil Engineering and Operations Research, Princeton University, 1990.

    Google Scholar 

  • G.A. Fenton. Random field modeling of CPT data. J Geotech Geoenv Eng, ASCE, 125 (6): 486–498, 1999.

    Google Scholar 

  • G.A. Fenton and E.H. Vanmarcke. Simulation of random fields via local average subdivision. J Eng Mech, ASCE, 116 (8): 1733–1749, 1990.

    Google Scholar 

  • C.M. Goss and D.V. Griffiths. Discussion on rigorous plasticity solutions for the bearing capacity of two-layered clay. Géotechnique, 2001. To appear.

    Google Scholar 

  • D.V. Griffiths. Finite element analyses of walls, footings and slopes. PhD thesis, Department of Engineering, University of Manchester, 1980.

    Google Scholar 

  • D.V. Griffiths. Computation of bearing capacity factors using finite elements. Géotechnique, 32 (3): 195–202, 1982.

    Article  Google Scholar 

  • D.V. Griffiths. Computation of bearing capacity on layered soils. In Z. Eisenstein, editor, Proc 4th lot Conf Numer Methods Geomech, pages 163–170. A.A. Balkema, Rotterdam, 1982.

    Google Scholar 

  • D.V. Griffiths. Computation of collapse loads in geomechanics by finite elements. Ing Arch, 59: 237–244, 1989.

    Article  Google Scholar 

  • D.V. Griffiths. Failure criterion interpretation based on Mohr-Coulomb friction. J Geotech Eng, ASCE, 116 (GT6): 986–999, 1990.

    Google Scholar 

  • D.V. Griffiths and G.A. Fenton. Three-dimensional seepage through a spatially random soil. J Geotech Eng, ASCE, 123 (2): 153–160, 1997.

    Google Scholar 

  • D.V. Griffiths and G.A. Fenton. Influence of soil strength spatial variability on the stability of an undrained clay slope by finite elements. In Slope Stability 2000, Proceeding of GeoDenver 2000, pages 184–193. 2000.

    Google Scholar 

  • D.V. Griffiths and G.A. Fenton. Bearing capacity of spatially random soil: The Prandtl problem revisited. Géotechnique, 2001. To appear.

    Google Scholar 

  • D.V. Griffiths and D.J. Kidger. Enhanced visualization of failure mechanisms in finite elements. Comput Struct, 56 (2): 265–269, 1995.

    Article  Google Scholar 

  • D.V. Griffiths and P.A. Lane. Slope stability analysis by finite elements. Géotechnique, 49 (3): 387–403, 1999.

    Article  Google Scholar 

  • D.V. Griffiths, F. Molenkamp, and I.M. Smith. Computer implementation of a double hardening model for sand. In: P.A. Vermeer and H.J. Luger, eds, Proc. IUTAM Symp. on Deformation and Failure of Granular Materials, pages 213–222. A.A. Balkema, Rotterdam, 1982.

    Google Scholar 

  • M.E. Harr. Reliability based design in civil engineering. McGraw Hill, London, New York, 1987.

    Google Scholar 

  • M.A. Hicks and R Boughrarou. Finite element analysis of the Nelerk underwater berm failures. Géotechnique, 48 (2): 169–185, 1998.

    Article  Google Scholar 

  • M.A. Hicks and S.W. Wong. Static liquefaction of loose slopes. In: G. Swoboda, eds, Proc 6th Int Conf Numer Methods Geornech, pages 1361–1368. A.A. Balkema, Rotterdam, 1988.

    Google Scholar 

  • R.J. Hoeksema and P.K. Kitanidis. Analysis of the spatial structure of properties of selected aquifers. Water Resour Res, 21 (4): 563–572, 1985.

    Article  Google Scholar 

  • N. Janbu. Slope stability computations. In: Soil Mech. and Found. Engrg. Rep. Technical University of Norway, Trondheim, Norway, 1968.

    Google Scholar 

  • F.H. Kulhawy, M.J.S. Roth, and M.D. Grigoriu. Some statistical evaluations of geotechnical properties. In Proc. ICASP6, 6th Int. Conf. Appl. Stats. Prob. Civ. Eng. 1991.

    Google Scholar 

  • T.W. Lambe and F. Silva. The ordinary method of slices revisited. Geotechnical News, 13 (3): 49–53, 1995.

    Google Scholar 

  • T.W. Lambe and R.V. Whitman. Soil Mechanics. John Wiley and Sons, Chichester, New York, 1969.

    Google Scholar 

  • P.A. Lane and D.V. Griffiths. Asessment of stability of slopes under drawdown conditions. J Geotech Geoenv Eng, ASCE, 126 (5): 443–450, 2000.

    Google Scholar 

  • J.B. Lechman. The progression of failure in earth slopes by finite element analysis. Master’s thesis, Division of Engineering, Colorado School of Mines, 2000.

    Google Scholar 

  • I.K. Lee, W. White, and O.G. Ingles. Geotechnical Engineering. Pitman, London, 1983.

    Google Scholar 

  • B. Loret and J.H. Prevost. Dynamic strain localisation in fluid-saturated porous media. J Eng Mech, ASCE, 117 (4): 907, 1991.

    Google Scholar 

  • J. Lowe and L. Karafiath. Stability of earth dams upon drawdown. In Proc. of the 1st Pan-Am. Conf. on Soil Mech. and Found. Engrg.,pages 537–552. Mexico, 1960.

    Google Scholar 

  • T. Matsui and K-C. San. Finite element slope stability analysis by shear strength reduction technique. Soils Found, 32 (1): 59–70, 1992.

    Article  Google Scholar 

  • R.S. Merifield, S.W. Sloan, and H.S. Yu. Rigorous plasticity solutions for the bearing capacity of two-layered clays. Géotechnique, 49 (4): 471–490, 1999.

    Article  Google Scholar 

  • F. Molenkamp Elasto-plastic double hardening model Monot. Technical report, Delft Geotechnics, 1981.

    Google Scholar 

  • N.R. Morgenstern. Stability charts for earth slopes during rapid drawdown. Géotechnique, 13: 121–131, 1963.

    Article  Google Scholar 

  • N.R. Morgenstern and V.E. Price. The analysis of the stability of general slip surfaces. Géotechnique, 15 (1): 79–93, 1965.

    Article  Google Scholar 

  • D.J. Naylor and G.N. Pande. Finite elements in geotechnical engineering. Pineridge Press, Swansea, U.K., 1981.

    Google Scholar 

  • G.M. Paice. Finite element analysis of stochastic soils. PhD thesis, University of Manchester, U.K., 1997.

    Google Scholar 

  • G.M. Paice and D.V. Griffiths. Reliability of an undrained clay slope formed from spatially random soil. In: J-X. Yuan, eds, IACMAG 97, pages 1205–1209. A.A. Balkema, Rotterdam, 1997.

    Google Scholar 

  • P. Perzyna. Fundamental problems in viscoplasticity. Advances in Applied Mechanics, 9: 243–377, 1966.

    Google Scholar 

  • D.M. Potts, G.T. Dounias, and P.R. Vaughan. Finite element analysis of progressive failure of Carsington embankment. Géotechnique, 40 (1): 79–102, 1990.

    Article  Google Scholar 

  • S. Sarma. Stability analysis of embankments and slopes. J Geotech Eng, ASCE, 105: 1511–1524, 1979.

    Google Scholar 

  • I.M. Smith and D.V. Griffiths. Programming the Finite Element Method. John Wiley and Sons, Chichester, New York, 3rd edition, 1998.

    Google Scholar 

  • I.M. Smith and D.K.H. Ho. Influence of construction technique on performance of braced excavation in marine clay. Int J Numer Anal Methods Geomech, 16, 1992.

    Google Scholar 

  • I.M. Smith and R. Hobbs. Finite element analysis of centrifuged and built-up slopes. Géotechnique, 24 (4): 531–559, 1974.

    Article  Google Scholar 

  • N. Snitbhan and W.F. Chen. Elastic-plastic large deformation analysis of soil slopes. Comput Struct, 9: 567–577, 1976.

    Article  Google Scholar 

  • E. Spencer. A method of analysis of the stability of embankments assuming parallel interslice forces. Géotechnique, 17 (1): 11–26, 1967.

    Article  Google Scholar 

  • E.A. Sudicky. A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res, 22 (13): 2069–2083, 1986.

    Article  Google Scholar 

  • D.W. Taylor. Stability of earth slopes. J. Boston Soc. Civ. Eng., 24: 197–246, 1937.

    Google Scholar 

  • K. Terzaghi and R.B. Peck. Soil Mechanics in Engineering Practice, page 237. John Wiley and Sons, New York, 1967.

    Google Scholar 

  • R. Torres and T. Coffman. Liquefaction analysis for CAS: Willow Creek Dam. Technical Report WL-8312–2, U.S. Department of the Interior, Bureau of Reclamation, 1997.

    Google Scholar 

  • E.H. Vanniarcke. Random fields: Analysis and synthesis. The MIT Press, Cambridge, Mass., 1984.

    Google Scholar 

  • R.V. Whitman and W.A. Bailey. Use of computers for slope stability analysis. J Soil Mech Found Div, ASCE, 93 (SM4): 475–498, 1967.

    Google Scholar 

  • F. S. Wong. Uncertainties in FE modeling of slope stability. Comput Struct, 19: 777–791, 1984.

    Article  Google Scholar 

  • P.K. Woodward and D.V. Griffiths. Observations on the computation of the bearing capacity factor N y by finite elements. Géotechnique, 48 (1): 137–141, 1998.

    Article  Google Scholar 

  • O.C. Zienkiewicz and I.C. Cormeau. Viscoplasticity, plasticity and creep in elastic solids. a unified approach. Int J Numer Methods Eng, 8: 821–845, 1974.

    Article  MATH  Google Scholar 

  • O.C. Zienkiewicz, M. Huang, and M. Pastor. Localization problems in plasticity using finite elements with adaptive remeshing. Int J Numer Anal Methods Geomech, 19 (2): 127–148, 1995.

    Article  MATH  Google Scholar 

  • O.C. Zienkiewicz, C. Humpheson, and R.W. Lewis. Associated and non-associated viscoplasticity and plasticity in soil mechanics. Géotechnique, 25: 671–689, 1975.

    Article  Google Scholar 

  • O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 1. McGraw Hill, London, New York, 4th edition, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Griffiths, D.V. (2001). Stability analysis of highly variable soils by elasto-plastic finite elements. In: Griffiths, V.D., Gioda, G. (eds) Advanced Numerical Applications and Plasticity in Geomechanics. International Centre for Mechanical Sciences, vol 426. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2578-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2578-6_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83337-7

  • Online ISBN: 978-3-7091-2578-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics