Advertisement

Nonlinear Problems During Consolidation Process

  • Janusz M. Dłużewski
Part of the International Centre for Mechanical Sciences book series (CISM, volume 426)

Abstract

The geometrical nonlinear problems oriented at geotechnical problems are presented herein. Lagrangian, Eulerian and updated Lagrangian procedures are discussed. The description of a two phase medium i.e. soil skeleton and water is formulated. Both geometrical and material nonlinearites for the fully coupled problem are considered. The updated Lagrange description is applied to model geometrically non-linear effects during consolidation process. The interaction problems between structure and soil foundation are studied. The description of the contact phenomenon which take place at interface soil-structure for a two-phase medium, i.e. skeleton and water, is formulated. Galerkin’s and variational methods are used to derive the equations for the interface element in consolidation problems. The finite element equations for consolidation problems in large strains are formulated. The changes of the permeability in relation to the current porosity are discussed. The numerical tests for elastic and elasto-plastic skeleton models are shown and discussed.

Keywords

Pore Pressure Void Ratio Interface Element Excess Pore Pressure Consolidation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, J. H., and Salfors, G. (1991). Experimental determination of stress-strain-time characteristics in laboratory and in situ tests, General report, Proceedings 10 h ECSMFE, Firence, Vol. 3, 915–956.Google Scholar
  2. Asaoka, A., Noda, T., and Fernando, G. S.K. (1997). Effects of changes in geometry on the linear elastic consolidation deformation, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 37, No. 1. 29–39.Google Scholar
  3. Asaoka, A., Nakano, M., and Noda, T. (1997). Soil-water coupled behaviour of heavily overconsolidated clay near/at critical state, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 37, No. 1., 13–28.Google Scholar
  4. Asaoka, A., Noda, T., Fernando, G. S.K., and Yamada, E. (1998). Creep-like delayed failure of clayey ground after the end of embankment construction, Proceedings of the 4th European Conference on Numerical Methods in Geotechnical Engineering, Udine, Italy, 243–252.Google Scholar
  5. Bakker, K. J., and Vermeer P. A. (1986). Finite element analysis of sheetpile walls, Proceedings of the 2nd International Symposium on Numerical Models in Geomechanics, Ghent, Belgium, 409–416.Google Scholar
  6. Bakker, K. J., and Brinkgreve R. B. J. (1990). The use of hybrid beam elements to model sheetpile behaviour in two dimensional deformation analysis. Proceedings 2“ d European Specialty Conference on Numerical Methods in Geotechnical Engineering, Santander, Spain, 559–571.Google Scholar
  7. Bathe, K. J. (1982). Finite element procedures in engineering analysis. Prentice-Hall, Inc. New Jersey.Google Scholar
  8. Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, Vol. 12, 155–164.CrossRefMATHGoogle Scholar
  9. Biot, M. A. (1956). General solution of the equations of elasticity and consolidation for porous materials. Journal ofApplied Mechanics, Vol. 23, 91–96.MathSciNetMATHGoogle Scholar
  10. Booker, J. R., Small, J. S. (1975). An investigation of the stability of numerical solutions of Biot’s equations of consolidation. International Journal Solids and Structures, Vol. 11, 907–917.CrossRefMATHGoogle Scholar
  11. Burland, J. B. (1967). Deformation of soft clay. Ph.D. Thesis, University Cambridge.Google Scholar
  12. Chacinski, Z., Dluzewski, J. M. (1995). Badanie charakterystyk przeplywu w procesie konsolidacji gruntôw organicznych. II Seminarium Instytutu Zaopatrzenia w Wodç i Budownictwa Wodnego, Warszawa. (Study of the permeability relation for soft organic soils, Proceedings of 2nd Seminar Institute of Water Supply and Hydrotechnical Structures, Warsaw, Poland ), 69–74.Google Scholar
  13. Cormeau, C. (1975). Numerical stability in quasi static elasto-visco-plasticity. International Journal of the Numerical Methods Engineering, Vol. 9, 109–127.MathSciNetCrossRefMATHGoogle Scholar
  14. Cormeau, C. (1976). Viscoplasticity and plasticity in the finite element methods. Ph.D. Thesis, Swansea.Google Scholar
  15. Crisfield, M. A. (1996). Non-linear Finite Element Analysis of Solids and Structures. Vol. 1, John Wiley & Sons, New York.Google Scholar
  16. Crisfield, M. A. (1997). Non-linear Finite Element Analysis of Solids and Structures. Vol. 2, Advanced Topics, John Wiley & Sons, New York.Google Scholar
  17. Day, R. A., and Poots, D. M. (1994). Zero thickness interface elements–numerical stability and application. International Journal for Numerical and Analytical Methods in Geomechanics, Vol 18, 689–708.CrossRefGoogle Scholar
  18. Dafalias, Y. F., and Herrmann, L. R. (1980). A bounding surface soil plasticity model. Proceedings of International Symposium Soils under Cyclic Trans. Load., Swansea, 335–345.Google Scholar
  19. Derski, W., Izbicki, R., Kisiel, I., and Mroz Z. (1988). Rock and Soil Mechanics. PWN-Elsevier, Warszawa-Amsterdam.Google Scholar
  20. Desai, C. S., and Zhang, D. (1987). Viscoplastic model for geologic materials with generalized flow rule. International Journal for Numerical and Analytical Methods In Geomechanics, Vol. 11, 38–45.CrossRefGoogle Scholar
  21. Desai, C. S., Zaman, M. M., Lightner, J. G., Siriwardane, H. J. (1984). Thin-layer element for interfaces and joints. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 8, 19–43.CrossRefGoogle Scholar
  22. Dienes, J. K. (1979). On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica, Vol. 32, 217–232.MathSciNetCrossRefMATHGoogle Scholar
  23. Dluzewski, J. M. (1988). Total formulation for large strains in soils. International Journal Computers and Geotechnics, Vol. 5, No. 3, 197–211.CrossRefGoogle Scholar
  24. Dluzewski, J. M., Termaat, R. J. (1990). Consolidation by finite element method in engineering problems. Proceedings 2“ d European Speciality Conference on Numerical Methods in Geotechnical Engineering, Santander, Spain, 213–222.Google Scholar
  25. Dluewski, J. M. (1991). Soil structure interactions in consolidation problems. Proceedings 7th Conference of International Associations for Computer Methods and Advances in Geomechanics, Carinas, Australia, May, 1141–1146.Google Scholar
  26. Dluewski, J. M. (1993). Numerical modelling of soil structure interactions in consolidation problems. Warsaw University of Technology Publications, Civil Engineering, Vol. 123Google Scholar
  27. Dluzewski, P., and Antunez, H. (1994). Finite element simulation of dislocation field movement. Computer. Assist. Mechanics Engineering. Science. 2, 141–145.Google Scholar
  28. Dluzewski, J. M. (1997). HYDRO-GEO Program elementbw skonczonych dla geotechniki, hydrotechniki i inzynierii srodowiska. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa. (HYDRO-GEO — finite element program for hydrotechnics, geotechnics and environmental engineering. Warsaw University of Technology Publications)Google Scholar
  29. Dluewski, J. M. (1997). Nonlinear consolidation in finite element modelling. Proceedings of the IX International Conference on Computer Methods and Advances in Geomechanics, Wuhan, China, 1089–1094.Google Scholar
  30. Dluewski, J. M. (1998). Large strain consolidation for elasto-plastic materials. Proceedings of the 4th European Conference on Numerical Methods in Geotechnical Engineering, Udine, Italy, 473–482.Google Scholar
  31. Dluzewski, J.M., Popielski, P., Sternik, K., and Gryczmanski, M. (1999). Consolidation of soft soils in terms of finite element modelling. Proceedings of the Seventh International Conference on Numerical Models in Geomechanics (NUMOG VII) Graz, Austria, September, 569–572.Google Scholar
  32. Eringen, A. C. (1974). Basic Principles in “Continuum Physics”. Vol. 2, Academic Press, NY. Fung, Y. C. (1965). Foundations of solid mechanics. Prentice Hall.Google Scholar
  33. Ghaboussi, J., Wilson E. L., and Isenberg, J. (1973). Finite element for rock joints and interfaces. Journal of the Soil Mechanics and Foundations Division, ASCE, 99, SM10, October, 833–848.Google Scholar
  34. Gibson, R. E., Schiffman, R. L., and Pu S. L. (1970). Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base. Quart. Journal Mechanics and Applied Mathematics., Vol. XXIII, Pt. 4, 505–520.Google Scholar
  35. Goodman, R. E., Taylor R. L., and Brakke T. L. (1968). A model for the mechanics of jointed rock. Journal of the Mechanics Division, ASCE, 94, SM3, 637–659.Google Scholar
  36. Goodman, R. E., and Dubois J. (1972). Duplication of dilatancy in analysis of jointed rocks. Journal of the Soil Mechanics and Foundations Division, ASCE, 98, SM4, April, 399–422.Google Scholar
  37. Gryczmariski, M. (1994). Analytical and numerical subsoil models for soil-foundation interaction problems. Studia Geotechnika et Mechanica, Vol. XVI, No. 3–4, 29–72.Google Scholar
  38. Gryczmariski, M. (1995). Pr6ba klasyfikacji modeli konstytutywnych grunt6w. Zeszyty Naukowe Politechniki Slqskiej, Budownictwo, 81. (Trial of the constitutive soil models classification. Scientific Note, Silesian University of Technology, Civil Engineering, 81, 433–446.Google Scholar
  39. Gryczmariski, M. (1995). Wprowadzenie do opisu sprOysto plastycznych modeli gruntôw. Studia z zakresu inzynierii, 40, KILiW, IPPT PAN, Warszawa. (Introduction to elastoplastic soil models. Civil Engineering Study No. 40, Polish Academy of Science, Institute of Fundamental Technical Research, Warsaw ).Google Scholar
  40. Hashiguchi, K. (1986). A mathematical description of elastic-plastic deformation in normal-yield and sub-yield states. Proceedings of the International Symposium on Numerical Models in Geomechanics „NUMOG 2“, Ghent, 17–24.Google Scholar
  41. Hibbit, H. D., Marcal, P. V., and Rice, J. R. (1970). A finite element formulation for problems of large strain and large displacement. International Journal of Solids and Structures, Vol. 6, 1069–186.CrossRefGoogle Scholar
  42. Hill, R. (1968). On constitutive inequalities for simple materials. I, II, Journal Mechanics Physics. Solids, Vol. 16, 229–242.Google Scholar
  43. Hill, R. (1978). Aspects of invariance in solid mechanics. Advances in Applied Mechanics, Vol. 18, Academic Press, 1–75.Google Scholar
  44. Hohberg, J. M. (1990). A note on spurious oscillations in FEM joint elements. Earthq. Engineering Struct. Dynamic, Vol. 19Google Scholar
  45. Huyakorn, P. S., and Pinder, G. F. (1983). Computational Methods in Subsurface Flow. Academic Press, NY.MATHGoogle Scholar
  46. Kanchi, M. B., Zienkiewicz, O. C., and Owen, P.R.J. (1978). The visco-plastic approach to problems of plasticity and creep involving geometric nonlinear effects. International Journal for the Numerical Methods in Engineering Vol. 12, 169–181.CrossRefMATHGoogle Scholar
  47. Kleiber, M. (1975). Lagrangian and Eulerian finite element formulation for large strain elastoplasticity. Bull. Acad. Polon. Sci. Ser. Techn. 23, 117–1. 26.Google Scholar
  48. Koiter, W. T. (1960). General theorem for elastic-plastic solids. Progress in Solid Mechanics, Vol.1 (eds. I.N. Sneddon and R.Hill), North-Holland Publishing Co., Amsterdam. 165–221Google Scholar
  49. Kuklik, P., Sejnoha, M., and Mares, J. (1998). Dimensional reduction applied to specific problems of consolidation. Proceedings of the IV European Conference on Numerical Methods in Geotechnical Engineering–NUMGE98, Udine, Italy, 337–346.Google Scholar
  50. Kuklik, P., and Zalesky, J. (1995). Analysis of some experiments carried on the Cam-clay model. WORKSHOP 95, Prague, 357–358.Google Scholar
  51. Kuklik, P. (1998). Veryfication of Cam-clay model in description of consolidation. SS CC98, Durban, South Africa, 281–285.Google Scholar
  52. Lee, E. H. (1969). Elasto-plastic deformation at finite strain. Journal of Applied Mechanics 36, 1–6.CrossRefMATHGoogle Scholar
  53. Lee, E. H., and McMeeking, R. M. (1980). Concerning elastic and plastic components of deformations. International Journal Solids and Structures, Vol. 18, 715–721.MathSciNetCrossRefGoogle Scholar
  54. Lewis, R. W., and Schrefler, B. A. (1998). The finite element method in the static and dynamic deformation and consolidation of porous media. John Wiley, Second edition, New York.Google Scholar
  55. Malvern, L. E., Introduction to the Mechanics of a Continuos Medium,Prentice Hall, Englewood Cliffs NYGoogle Scholar
  56. Mandel, J. (1972). Plasticite classique et viscoplasticite. Lecture Notes International Centre for Mechanical Sciences, Udine, Springer-Verlag, BerlinGoogle Scholar
  57. McMeeking, R. M., and Rice, J. R. (1975). Finite-element formulations for problems of large elasto-plastic deformation. International Journal Solids and Structures, Vol. 11, 601–616.CrossRefMATHGoogle Scholar
  58. Meijer, K. L. (1985). Computation of stresses and strains in saturated soil. Delft University of Technology, Ph.D. thesis, The Netherlands.Google Scholar
  59. Meroi, E. A., Schrefler, B. A., and Zienkiewicz, O. C. (1995). Large strain static and dynamic semisaturated soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 19, 81–106.CrossRefMATHGoogle Scholar
  60. Mikasa, M. (1965). The consolidation of soft clay–A new consolidation theory and its application. Civil Engineering in Japan, 21–26.Google Scholar
  61. Monte, J. L., and Kritzen, R. J. (1976). One-dimensional mathematical model for large-strain consolidation. Geotechnique 26 (3), 495–510.CrossRefGoogle Scholar
  62. Mrôz, Z. (1985) Non-linear continuum mechanics of solids. Lecture notes, Polish Academy of Science, Institute of Fundamental Technical Research, Warsaw.Google Scholar
  63. Norris, V. A., and Lewis, R. W. (1979). A finite element procedure for consolidation with nonlinear constitutive law. International Journal for Numerical and Analytical Methods in Geomechanics Vol. 1.Google Scholar
  64. Pande, G. N., and Sharma, K. G. (1979). On joint/interface elements and associated problems of numerical ill-conditioning, International Journal for Numerical and Analytical Methods in Geomechanics, 3, 293–300.CrossRefGoogle Scholar
  65. Perzyna, P. (1966). Fundamental problems in visco-plasticity. Advances in Applied Mechanics, Vol. 9, Academic Press, New York, 243–377.Google Scholar
  66. Reed, M. B. (1993). Incorporation of strain-hardening in the implicit elasto-viscoplasticity algorithm. Communication in Numerical Methods in Engineering, Vol. 9, 331–336.CrossRefMATHGoogle Scholar
  67. Rice, J. M. (1971). Inelastic constitutive relations for solids: an interval variable theory and its application to metal plasticity. Journal of Mechanics and Physics of Solids, 19, 433–455.CrossRefMATHGoogle Scholar
  68. Russell, D. (1992). An element to model thin, highly permeable materials in two dimensional finite element consolidation analysis. Proceedings of the 2“ d European Speciality Conference on Numerical Methods in Geotechnical Engineering, Santander, Spain, 303–310.Google Scholar
  69. Sandhu, R. S. (1968). Fluid flow in saturated porous elastic media. Ph.D. thesis, University of California, Berkeley.Google Scholar
  70. Sandhu, R. S., and Wilson, E. L. (1969). Finite element analysis of seepage in elastic media. ASCE Journal Vol. 95, EMS, 641–652.Google Scholar
  71. Schofield, A. N., and Wroth,. C. P. (1968). Critical State Soil Mechanics. Mc Graw-Hill, London.Google Scholar
  72. Song Er-Xiang. (1990). Elasto-plastic consolidation under steady and cyclic loads. PhD. thesis, Delft University of Technology, The Netherlands.Google Scholar
  73. Stolle, D. F. E. (1991). An interpretation of initial stress and strain methods, and numerical stability. International Journal for Numerical and Analytical, Methods in Geomechanics Vol. 15, 399–416.MATHGoogle Scholar
  74. Swoboda, G., and Lai X.Y. (1994). Simulation of arch dam-foundation interaction with a new friction interface element. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 17, 601–617.CrossRefGoogle Scholar
  75. Szefer, G. (1977). Non-linear problems of consolidation theory. Symposium Franco-Polonais Problems non-lineares de mecanique, Krakow, Poland.Google Scholar
  76. Szymanski, A. (1991). The factors determining the deformations analysis of organic subsoil under embankment. (in Polish), habilitation thesis, Warsaw Agricultural University Press, Treaties and Monographs.Google Scholar
  77. Tan, A. and Scott, R. F. (1988). Finite strain consolidation, A study of convection. Soil and Foundation, Vol. 28, No.3, Sept, 64–75.Google Scholar
  78. Teodosiu, C. (1970). A dynamic theory of dislocations and its applications to the theory of the elastic plastic continuum, In Fundamental Aspects of Dislocation Theory ed. A. Simmonols et al., NBSSP, 317, II, 837–876.Google Scholar
  79. Terzaghi, K. (1923). Die Berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Akademie der Wissenschaften in Wien, Sitzungsberichte, Mathematisch-naturwissenschaftiche Klasse, Ha, 132. (3/4), 125–138Google Scholar
  80. Terzaghi, K. (1943). Theoretical Soil Mechanics. New York, J. Wiley & Sons.CrossRefGoogle Scholar
  81. Tezduya, T. E., and Ganjoo, D. K. Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretizations: Applications to transient convection-diffusion problems“, Computers Methods. Applied Mechanics Engineering 59, 49–71.Google Scholar
  82. Truesdell, C., and Toupin, R. A. (1960). The classical field theory. Handbuch der Physik, III/1 Springer.Google Scholar
  83. Truesdell, C. And Noll, W. (1965). The non-linear field theories of mechanics. Handbuch der Physik, II1/3 Springer.Google Scholar
  84. Van Langen, H., (1991). Numerical analysis of soil-structure interaction. Delft University of Technology, Ph.D. thesis.Google Scholar
  85. Van Langen, H., Vermeer, P. A. (1991). Interface elements for singular plasticity points. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 15, 1–15.CrossRefGoogle Scholar
  86. Vermeer, P., and Verruijt, A. (1981). An accuracy condition for consolidation by finite elements. International Journal for Numerical and Analytical Methods in Geomechanics, Vol 5, 1–14.MathSciNetCrossRefMATHGoogle Scholar
  87. Vermeer, P., Bonnier, P. G., Brand, P. J. W., Brinkgreve, R. B. J., Dluzewski, J. M., and Van Langen, H. (1990). PLAXIS - Finite Element Code for Soil and Rock Plasticity. Balkema.Google Scholar
  88. Verruijt, A. (1977). Generation and dissipation of pore–water pressures. Finite Elements in Geomechanics, Chapter 9, ed. G. Gudehus, Wiley, London, 293–317.Google Scholar
  89. Zienkiewicz, O.C., and Cormeau, I. C. (1974). Visco-plasticity—plasticity and creep in elastic solids–a unified numerical solution approach. International Journal for Numerical. Methods in Engineering, Vol. 8, 821–845.CrossRefMATHGoogle Scholar
  90. Zienkiewicz, O.C. (1982). Basic formulation of static and dynamic behaviour of soil and other porous media. In Numerical Methods in Geomechanics ed. J. B. Martin, 39–57.Google Scholar
  91. Zienkiewicz, O.C., and Shiomi, T. (1984). Static and dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. International Journal for the Numerical and Analytical Methods in Geomechanics, Vol. 8, 71–96.CrossRefMATHGoogle Scholar
  92. Zienkiewicz, O.C., Chan, A. H. C., Pastor, M., Paul, D. K., and Shiomi, T. (1990). Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I — Fully saturated problems, Proceedings ofRoyal Society London, A, 429, 285–309.CrossRefMATHGoogle Scholar
  93. Zienkiewicz, O.C., Xie, Y. M., Schrefler, B. A., Ledesma, A., and Bicanic, N. (1990). Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II — Semi-saturated problems, Proceedings ofRoyal Society London, A, 429, 311–321.CrossRefMATHGoogle Scholar
  94. Zienkiewicz, O. C., and Taylor R. (1991). The finite element method. Vols. 1 and 2. McGraw - Hill, New York.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Janusz M. Dłużewski
    • 1
  1. 1.Department of Environmental EngineeringWarsaw University of TechnologyPoland

Personalised recommendations