Advertisement

Laboratory Investigation and Numerical Modelling of Soil Improvement Techniques

  • Annamaria Cividini
Part of the International Centre for Mechanical Sciences book series (CISM, volume 426)

Abstract

A discussion is presented of the use of the laboratory investigation and of the finite element modelling for the analysis of geotechnical problems involving techniques of soil improvements. Among the variety of possible applications, those related to the low pressure grouting of granular soils, to the artificial freezing of grounds and to reinforced earth structures are discussed in some details. The analyses of cases related to actual design problems are also presented and commented upon.

Keywords

Hydraulic Head Triaxial Test Sand Layer Shear Resistance Shear Strength Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersland O.B., Gallavresi F., Goto S., Saareleinen S., Slunga E. (1989). General report of the specialty session on ground freezing. Proc. XII JCSAIFE, Rio de Janeiro.Google Scholar
  2. Andersland O.B., Ladanyi B. (1994). An introduction to frozen ground engineering. Chapman & Hall, NewYork.CrossRefGoogle Scholar
  3. Badiani B., Zavanella L. (1996). Studio sperimentale su un modello di opera in terra rinforzata, Laurea Thesis, Dept. of Civil Engineering, Universita’ di Brescia.Google Scholar
  4. Balduzzi G., Milani N. (1999). Indagine sperimentale del comportamento di una sabbia rinforzata, Laurea Thesis, Dept. of Structural Engineering, Politecnico di Milano.Google Scholar
  5. Bear J., Verruijt A. (1987). Modeling groundwater flow and pollution. Dordrecht: D.Reidel.CrossRefGoogle Scholar
  6. Cividini A. (1997). Plane strain testing of strain softening soils. Proc. 14th Int.Conf. on Soil Mechanics and Foundation Engineering, Hamburg, Vol. 1, 255–258.Google Scholar
  7. Cividini A. (2000). A study of the low pressure grouting of granular soils. Proc. of John Booker Memorial Symposiums, Sydney; Rotterdam: Balkema.Google Scholar
  8. Cividini A., Donelli M., Sterpi D. (1994). On the mechanical behaviour of sand reinforced with geotextiles. Proc. 3rd Europ.ConfNum.Aleth.Geotech.Engin., Manchester, 299–304.Google Scholar
  9. Cividini A., Gioda G. (1992). A finite element analysis of direct shear tests on stiff clays. Int. Journal for Numerical and Analytical Methods in Geomechanics, 16: 869–886.CrossRefGoogle Scholar
  10. Cividini A., Gioda G. (2000). Finite element analysis of free surface seepage flows. Chap. 20 in “Modeling in Geomechanics”, (M.Zaman, G.Gioda, J.R.Booker Eds.), John Wiley & Sons Ltd, Chichester U.K., 505–524.Google Scholar
  11. Cividini A., Gioda G., Sterpi D. (1997). An experimental and numerical study of the behavior of reinforced sands, (Invited paper) Proc. 9th Conf of the Int. Association for Computer Methods and Advances in Geomechanics, Wuhan, People Republic of China: 15–30.Google Scholar
  12. Cividini A., Sterpi D. (2000). Plane strain tests on reinforced sand and their numerical modelling. Proc. 2nd Europ. Conference on Geosynthetics and Exhibition, Bologna, Italy.Google Scholar
  13. Crank J. (1984). Free and moving boundary problems. Oxford University Press, Oxford, U.K.MATHGoogle Scholar
  14. De Buhan P., Salencon J. (1983). Determination of a macroscopic yield criterion for a multilayered material. Proc. Int. Colloquium on Failure criteria for structured media, Grenoble.Google Scholar
  15. Dei Cas M., Zanini T. (2000). Analisi numerica di prove triassiali piane nelle deformazioni su sabbia rinforzata, Laurea Thesis, Dept. of Structural Engineering, Politecnico di Milano.Google Scholar
  16. Drescher A., Vardoulakis LG., Han C. (1990). A biaxial apparatus for testing soils. Geotechnical Testing Journal, 13, 226–234.CrossRefGoogle Scholar
  17. Frivik P.E. (1980). State-of-the-art report on ground freezing: thermal properties, modelling of processes and thermal design. Proc. 2nd Int.Symp.on Ground Freezing, Trondheim.Google Scholar
  18. Gioda G. (1993). A finite element analysis of the artificial freezing of sand. Seminar on the Impact of the Computational Mechanics to Engineering Problems, Sydney.Google Scholar
  19. Gioda G., Locatelli L., Gallavresi F. (1994). A numerical and experimental study of the artificial freezing of sand. Canadian Geotechnical Journal, 31 (1).Google Scholar
  20. Ingold T.S. (1982). An analytical study of geotextile-reinforced embankments. Proc. 2nd Int.Conf on Geotextiles, Las Vegas.Google Scholar
  21. Liithi S. (2000). Comportamento di materiali geotecnici in prove triassiali piane ed assialsimmetriche, Laurea Thesis, Dept. of Structural Engineering, Politecnico di Milano.Google Scholar
  22. Mulilis J.P., Chan C.K., Seed H.B. (1975). The effects of method of sample preparation on the cyclic stress-strain behaviour of sands. EERC 75/18, Univ. of California at Berkeley.Google Scholar
  23. Nonveiller E. (1989). Grouting theory and practice. Elsevier.Google Scholar
  24. Rowe R.K., Booker J.R. (1985). I-D pollutant migration in soils of finite depth. Journal of Geotechnical Engineering, ASCE 111 (4): 479–499.Google Scholar
  25. Rowe R.K., Booker J.R. (1997). Recent advances in modeling of contaminant impact due to clogging. Proc.9th Int. Conf. of International Association for Computer Methods and Advances in Geomechanics; Wuhan, People Republic of China: 43–56.Google Scholar
  26. Salmon M.D. (1968). Elastic moduli of a stratified rock mass. Int.J. Rock Mech. Min.Sciences, 5, 519–527.CrossRefGoogle Scholar
  27. Smith I.M., Segrestin P. (1992). Inextensible reinforcements versus extensible ties–FEM comparative analysis of reinforced or stabilized earth structures. In “Earth Reinforcement Practice” (H.Okhiai, S.Hayashi, J. Otani, Edts. ), Balkema, pp. 425–430.Google Scholar
  28. Sterpi D. (2000). Influence of the kinematic testing conditions on the mechanical response of a sand. Computers and Geotechnics, 26, 23–41.CrossRefGoogle Scholar
  29. Voller V.R., Swaminathan C.R., Thomas B.G. (1990). Fixed grid techniques for phase change problems: a review. Int.JNumerical Methods in Engineering, 30: 875–898.CrossRefMATHGoogle Scholar
  30. Wendland E., Schmid G. (2000). A symmetrical streamline stabilization scheme for high advective transport. International J.Numer.Anal. Methods in Geomechanics, 24, 29–45.CrossRefMATHGoogle Scholar
  31. Zabaras N., Ruan Y. (1990). Moving and deforming finite element simulation of Stefan problem, Communications in Applied Numerical Methods, 6: 495–506.CrossRefMATHGoogle Scholar
  32. Zienkiewicz O.C., Valliappan S., King I.P. (1969). Elasto-plastic solutions of engineering problems. Initial-stress, finite element approach. International Journal for Numerical Methods in Engineering, 1, 75–100.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Annamaria Cividini
    • 1
  1. 1.Department of Structural EngineeringPolitecnico di MilanoMilanItaly

Personalised recommendations