Material Mechanics of Electromagnetic Solids

  • Carmine Trimarco
  • Gérard A. Maugin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 427)


Eshelby [1–5] introduced the notion (and the naming) of Maxwell stress tensor of Elasticity having in mind the Maxwell energy-stress of electromagnetism.


Maxwell Equation Lagrangian Density Electric Displacement Reference Configuration Current Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Eshelby J.D., (1951), Force on an Elastic Singularity, Phil. Tran. Roy. Soc. Lond., A244, 87–112.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Eshelby J.D., (1956), Continuum Theory of lattice Defects, in: Progress in Solid State Physics, Eds. F. Seitz and D.Turnbull, Vol. 3, p. 79, Academic Press, New York.Google Scholar
  3. [3]
    Eshelby J.D., (1975), Elastic Energy-momentum Tensor, J. of Elasticity, 5, 321–335.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Eshelby J.D., (1970), Energy Relations and the Energy-momentum Tensor in Continuum Mechanics, in: Inelastic Behavior of Solids, Eds. M.F. Kanninen, W.F. Adler, A.R. Rosenfeld, and R.I. Jaffe, pp. 77–114, McGraw Hill, New York.Google Scholar
  5. [5]
    Eshelby J.D., (1982), Aspects of Dislocation Theory, in: Mechanics of Solids (The Rodney Hill 60th Anniversary Volume), eds. H.G. Hopkins and M. Sewell, pp. 185–255, Pergamon Press, Oxford.Google Scholar
  6. [6]
    Nelson D.F., (1979), Electric, Optic and Acoustic Interactions in Dielectrics, John Wiley, New York.Google Scholar
  7. [7]
    Nelson D.F., (1991), Momentum, Pseudomomentum and Wave Momentum: Toward Resolving the Minkowski-Abraham Controversy, Phys. Rev., A44, 3905–3916.Google Scholar
  8. [8]
    Peierls R., (1979), Surprises in Theoretical Physics,Princeton Univ.Press.Google Scholar
  9. [9]
    Peierls R., (1985), Momentum and Pseudomomentum of Light and Sound, i n: Highlights of Condensed-Matter Physics, Ed. M. Tosi, Corso LXXXIX, pp. 237–255, Soc.Ital. Fisica, Bologna.Google Scholar
  10. [10]
    Eringen A.C. and Maugin G.A., (1990), Electrodynamics of Continua, Two volumes, Springer-Verlag, New York.Google Scholar
  11. [11]
    Maugin G.A., (1988), Continuum Mechanics of Electromagnetic Solids, (Vol.33 of Series in Applied Mathematics and Mechanics), North-Holland, Amsterdam.Google Scholar
  12. [12]
    Eshelby J.D., (1980), The Force on a Disclination in a Liquid Crystal, Phil. Mag., A42, 354–367.Google Scholar
  13. [13]
    Ericksen J.L., (1995), Remarks concerning Forces on Line Defects, Zeit. Angew. Math. Phys., (Special issue: Theoretical, Experimental and Numerical Contributions to the Mechanics of Fluids and Solids, dedicated to P.M.Naghdi), 46S, 247–2271.MathSciNetGoogle Scholar
  14. [14]
    Kröner E., (1993), Configurational and Material Forces in the Theory of Defects in Ordered Structures, CMDS 7 Proceedings, K.H. Anthony and H.J. Wagner Editors, Material Science Forum, 123–125, 447–454.Google Scholar
  15. [15]
    Maugin G.A. and Trimarco C., (1995b), On Material and Physical Forces in Liquid Crystals, Int. J. Engng. Sci., 33, 1663–1678.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Ogden R.W., (1984), Nonlinear Elastic Deformations, Ellis Horwood, Chichester, U.K (Dover reprint, New York, 1997 ).MATHGoogle Scholar
  17. [17]
    Reissner E., (1953), Variational Theorem for Finite Elastic Deformations, J. Math. and Phys. (MIT), 32, 129–135.MathSciNetMATHGoogle Scholar
  18. [18]
    Maugin G.A. and Trimarco C., (1993), Note on Mixed Variational Principle in Finite Elasticity, Rend. Mat. Accad. Lincei, IX-III, 69–74.Google Scholar
  19. [19]
    Knops R., Trimarco C. and Williams H.T., Uniqueness and Complementary Energy in Finite Elasticity. (Forthcoming). Google Scholar
  20. [20]
    Hanyga A., (1985), Mathematical Theory of Nonlinear Elasticity, Ellis Horwood„Chichester, U.K.MATHGoogle Scholar
  21. [21]
    Golebiewska-Herrmann A, (1983), Lagrangian Formulation of Continuum Mechanics, Physica, 118A, 300–314.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Pack Y.E. and Herrmann G., (1986a), Conservation Laws and the Material Momentum Tensor for the Elastic Dielectric, Int. J. Engng. Sci., 24, 1365–1374.CrossRefGoogle Scholar
  23. [23]
    Maxwell J. C., (1891), A Treatise on Electricity and Magnetism,volumes I and II, Oxford Classic Text in the physical Sciences, Clarendon Press, Oxford,,(1998, reprint)Google Scholar
  24. [24]
    Becker R., Electromagnetic Fields and Interactions,Dover Publ., NewYork, (1982, reprint).Google Scholar
  25. [25]
    Stratton J. A. (1941), Electromagnetic Theory, McGraw-Hill, New York.MATHGoogle Scholar
  26. [26]
    Jackson J.D., (1962), Classical Electrodynamics,J. Wiley & Sons,N.Y.Google Scholar
  27. [27]
    Tamm I E, (1979), Fundamentals of the Theory of Electricity, translated from the 1976 Russian edition, MIR Publishers.Google Scholar
  28. [28]
    Landau L.D. and Lifschitz E.M., (1960), Electrodynamics of Continuous Media, v. 8 of Course of Theoretical Physics, Pergamon Press, Oxford.Google Scholar
  29. [29]
    Penfield P. and Haus H. A., (1967), Electrodynamics of Moving Media, M. I. T. Press, Cambridge, Massachusetts.Google Scholar
  30. [30]
    Pao Y. H., (1978), Electromagnetic Forces in Deformable Continua, Mechanics Today, vol 4, S. Nemat-Nasser Editor, Pergamon Press, New York.Google Scholar
  31. [31]
    Trimarco C.: (1994). How Multipole Electric Moments Enter into Macroscopic Maxwell Equations, Il Nuovo Cimento B, 109, 533–540.Google Scholar
  32. [32]
    Toupin R.A., (1956), The Elastic Dielectrics, J. Rational Mech and Anal., 5, (849–915).Google Scholar
  33. [33]
    Schoeller H. and Thellung A., (1992) Lagrangian Formalism and Conservation Law for Electrodynamics in Nonlinear Elastic Dielectrics, Annals of Physics, 220–1.Google Scholar

Additional references for further studies

  1. Chadwick P., (1975), Applications of an Energy-momentum Tensor in Nonlinear Elastostatics, J. Elasticity, 5, 250–258.MathSciNetGoogle Scholar
  2. Cherepanov G.P., (1989), Remark on the Dynamic Invariant or Path-independent Integral, Int.J Solids Structures, 25, 1267–9.CrossRefMATHGoogle Scholar
  3. Dascalu C. and Maugin G.A., (1994), Energy-release Rates and Path-independent Integrals in Electroelastic Crack Propagation, Int.J.Engng.Sci., 32, 755–765.MathSciNetCrossRefMATHGoogle Scholar
  4. Edelen D.G.B., (1981), Aspects of Variational Arguments in the Theory of Elasticity: Facts and Folklore, Int. J. Solids Structures, 17, 729–740.MathSciNetCrossRefMATHGoogle Scholar
  5. Ericksen J.L., (1977), Special topics in Elastostatics, in: Advances in Applied Mechanics, Ed. C-S.Yih, Vol. 17, pp. 189–244, Academic Press, New York.Google Scholar
  6. Ericksen J.L., (1991), Introduction to the Thermomechanics of Solids, Chapman and Hall, London.Google Scholar
  7. Ericksen J.L., (1997), Equilibrium Theory for X-ray Observations of Crystals, Arch. Rat. Mech. Anal., 139, 181–200.MathSciNetCrossRefMATHGoogle Scholar
  8. Fomethe A. and Maugin G.A., (1996), Material Forces in Thermoelastic Ferromagnets Cont. Mech. and Thermodynamics, 8, 275–292.MathSciNetCrossRefMATHGoogle Scholar
  9. Golebiewska-Herrmann A., (1981), On Conservation Laws of Continuum Mechanics, Int. J. Solids Structures, 17, 1–9.MathSciNetCrossRefGoogle Scholar
  10. Green A.E., (1973), On Some General Formulae in Finite Elastostatics, Arch.Rat.Mech.Anal., 50, 73–80.MATHGoogle Scholar
  11. Grinfeld M.A. (1991), Thermodynamic Methods in the Theory of Heterogeneous Systems, ISIMM Series, Longman, Harlow, Essex.Google Scholar
  12. Gurtin M.E., (2000), Configurational Forces as Basic Concepts of Continuum Physics, Springer-Verlag, New York.Google Scholar
  13. Herrmann G., (1980), Some Applications of Invariant Variational Principles in Mechanics of Solids, in: Variational Methods in the Mechanics of Solids (IUTAM Symp.,Evanston, 1978), pp. 145–150, Pergamon Press, Oxford.Google Scholar
  14. Hill R., (1986), Energy-momentum Tensor in Elastostatics: Some reflections on the General Theory, J. Mech. Phys. Solids, 34, 305–317.MathSciNetCrossRefMATHGoogle Scholar
  15. Knowles J.K., and Sternberg E., (1972), Class of Conservation Laws in Linearized and Finite Elastostatics, Arch. Rat. Mech. Anal., 44, 187–211.MathSciNetMATHGoogle Scholar
  16. Maugin G.A., (1993), Material Inhomogeneities in Elasticity,Chapman and Hall, London (Volume 3 in Series «Applied Mathematics and Mathematical Computation).Google Scholar
  17. Maugin G.A., (1997), Momentum and Pseudomomentum in Matter, GAMM-Mitteilungen, Heft 1, 37–51.MathSciNetGoogle Scholar
  18. Maugin G.A., (1999), Nonlinear Waves in Elastic Crystals, Oxford Texts in Applied Mathematics, Oxford University Press, U.K.MATHGoogle Scholar
  19. Maugin G.A. and Epstein M., (1991), The Electroelastic Energy-momentum Tensor, Proc. Roy. Soc. Lond., A433, 299–312.MathSciNetCrossRefMATHGoogle Scholar
  20. Maugin G.A. and Trimarco C., (1991), Pseudo-momentum and Material Forces in Electromagnetic Solids, Int. J.Appl. Electromagn. Mat., 2, 207–216.Google Scholar
  21. Maugin G.A. and Trimarco C., (1991), Pseudo-quantité de mouvement et milieux élastiques inhomogènes, C.R.AcadSci.Paris, II - 313, 851–856.Google Scholar
  22. Maugin G.A. and Trimarco C., (1992), Pseudo-momentum and Material Forces in Nonlinear Elasticity: Variational Formulations and Application to Brittle Fracture, Acta Mechanica, 94, 1–28.MathSciNetCrossRefMATHGoogle Scholar
  23. Maugin G.A. and Trimarco C., (1993), Material Conservation Laws in Continuum Mechanics and the Electrodynamics of Continua, in: Advances in Modern Continuum Mechanics, Ed. G. Ferrarese, pp. 131–149, Pitagora, Bologna.Google Scholar
  24. Maugin G.A. and Trimarco c., (1995), The Dynamics of Configurational Forces at Phase-Transition Fronts (70th Anniversary of J.L.Ericksen), Meccanica, 30, 605–619.MathSciNetCrossRefMATHGoogle Scholar
  25. Maugin G.A. and Trimarco C., (1995), Dissipation of Configurational Forces in Defective Elastic Solids, Arch.Mech. (Poland), 47, 81–99.MathSciNetMATHGoogle Scholar
  26. Maugin G.A. and Trimarco C., (1995), Configurational Forces and Coherent Phase-transition Fronts in Thermoelastic Solids (IUTAM Symp., Nottingham, 1994), in: Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics (A.J.M. Spencer Anniversary Volume), Eds. A. H. England and D. F. Parler, pp. 345–350, Kluwer, Amsterdam.Google Scholar
  27. Maugin G.A. and Trimarco C., (1997), Driving Force on Phase-transition Fronts in Thermoelectroelastic Crystals, Mathematics and Mechanics of Solids, 2, 199–214MathSciNetCrossRefMATHGoogle Scholar
  28. Norris, A.N., The energy of a growing elastic surface. Int. JSolids Structures, 36, 5237–5252.Google Scholar
  29. Nowacki J. P., Trimarco C. (1990): Note on thermal inclusion in elastic dielectric material. Atti Sem. Mat. Fis. Univ. Modena, XXXVIII, 371–378.MathSciNetGoogle Scholar
  30. Sabir M. and Maugin G.A., (1996), On the Fracture of Paramagnets and Soft Ferromagnets, Int.J.Non-linear Mechanics, 31, 425–440.CrossRefMATHGoogle Scholar
  31. Trimarco C. (1989): On the electrostatics of a rigid homogeneous isotropic and dielectric. Int. J. Engng. Sci., 27, 1569–1579.MathSciNetCrossRefMATHGoogle Scholar
  32. Trimarco C. (1992): The electric capacitance of a rigid dielectric structure. Int. J. of Solids and Structures, 29, 1647–1655.MathSciNetCrossRefMATHGoogle Scholar
  33. Trimarco C. (1994): The Toupin-Mindlin Theory of Dielectrics in The Light of View of Mossotti’s Idea. Bull. of Polish Academy of Sciences, 42, n. 3, 429–438.Google Scholar
  34. Trimarco C. (1999): Microscopic Variables and Macroscopic Quantities. In: Geometry, Continua and Microstructures, Série Mathématique: Travaux en cours, Ed. G.A. Maugin, pp. 121–129, Herrmann, Paris.Google Scholar
  35. Trimarco C. (1999): Hamiltonian versus Lagrangian Forms. In: Monographs and Surveys in Pure and Applied Maths series, 103–108, Chapman and Hall/CRC, ed.G.Iooss, O.Guès, A. Nouri.Google Scholar
  36. Truesdell C.A., and Noll W., (1965), Nonlinear Field Theories of Mechanics, in: Handbuch der Physik, Bd.III/3, ed. S. Flügge, Springer-Verlag, Berlin.Google Scholar
  37. Truesdell C.A., and Toupin R.A., (1960), The Classical Theory of Fields, in: Handbuch der Physik, Bd.III/1, ed. S. Flügge, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Carmine Trimarco
    • 1
  • Gérard A. Maugin
    • 2
  1. 1.Dipartimento di Matematica Applicata «U.Dini»Università di PisaItaly
  2. 2.Laboratoire de Modélisation en MécaniqueUniversité Pierre et Marie CurieParisFrance

Personalised recommendations