Elements of Field Theory in Inhomogeneous and Defective Materials

  • Gérard A. Maugin
  • Carmine Trimarco
Part of the International Centre for Mechanical Sciences book series (CISM, volume 427)


So-called configurational forces, also called material forces in modern continuum mechanics, and more generally energetic driving forces, are those « forces »which are associated by duality to the displacement or motion of whatever may be considered a defect in a continuum field theory. Conceptually simple examples of such « defects » are dislocations in ordered crystals, disclinations in liquid crystals, vortices in fluid mechanics, cracks and cavities in materials science, propagating fronts in phase-transition problems, shock waves in continuum mechanics, domain walls in solid-state science, and more generally all manifestations, smooth or abrupt, of changes in material properties. In such a framework, the material symmetry of the physical system is broken by the presence of a field singularity of a given dimensionality (point, line, surface, volume). Until very recently all these domains were studied separately but a general framework emerged essentially through the works of the authors and co-workers, basing initially on inclusive ideas of J.D.Eshelby (deceased 1985) — hence the coinage of Eshelbian mechanics by the authors for the mechanics of such forces. In this framework which is developed in a somewhat synthetic form, all configurational forces appear as forces of a non-Newtonian nature, acting on the material manifold (the set of points building up the material whether discrete or continuous) and not in physical space which remains the realm of Newtonian forces and their more modern realizations which usually act per quantity of matter (mass or electric charge). That is, configurational forces act on spatial gradients of properties, on field singularities, etc. They acquire a true physical meaning only in so far as the associated expanded power is none other than a dissipation; accordingly, configurational forces are essentially used to formulate criteria of progress of defects in accordance with the second law of thermodynamics. Within such a general vision, in fact, many irreversible properties of matter (e.g., damage, plasticity, magnetic hysteresis, phase transition, growth) are seen as irreversible local rearrangements of matter (material particles in an ordered crystal, spin layout in a ferromagnetic sample, director network in a liquid crystal) that are represented by pure material mappings. This is where some elements of modern differential geometry enter the picture following earlier works by Kröner, Noll, and others.


Material Inhomogeneity Material Force Hamiltonian Density Jump Relation Entropy Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berezovski A.,(1997), Continuous cellular Automata for Simulation of Thermoelasticity, Proc.Est.Acad.Sci., Math.Phys., 46: 5–13.Google Scholar
  2. Berezovski A. and Maugin G.A., (1999a), Application of High-resolution Wave-propagation Algorithm to 2D Elastic Propagation, J.Comput.Phys., (to be published).Google Scholar
  3. Berezovski A. and Maugin G.A., (1999b), Application of Wave-propagation Algorithm to 2D Thermoelastic wave Propagation in Inhomogeneous Media, in: Proc.Intern.Conf. on Godunov’ Method (Oxford, October 1999), ed. E.F.Toro, Kluwer: Dordrecht (in press).Google Scholar
  4. Braun M., (1997), Configurational Forces Induced by Finite-element Discretization, Proc.Est.Acad.Sci., Math.Phys., 46: 24–31.MATHGoogle Scholar
  5. Brenig W., (1955), Bessitzen Schallwellen einen Impulz, Zeit.Phys., 143: 168–172.CrossRefGoogle Scholar
  6. Bui H.D., (1977), Mécanique de la rupture fragile, Paris: Masson.Google Scholar
  7. Casal P., (1978), Interpretation of the Rice Integral in Continuum Mechanics, Lett.Appl. Engng.Sci., 16: 335–347.MathSciNetMATHGoogle Scholar
  8. Cleja-Tigoiu S. and Maugin G.A., (2000), Eshelby’s Stress Tensors in Finite Elastoplasticity, Acta Mechanica, 139: 231–249.CrossRefMATHGoogle Scholar
  9. Christov C.I. and Maugin G.A., (1995), An Implicit Difference Scheme for the Long-time Evolution of Localized Solutions of a Generalized Boussinesq System, J.Comput.Phys., 116: 39–51.MathSciNetCrossRefMATHGoogle Scholar
  10. Christov C.I., Maugin G.A. and Velarde M.G., (1996), Well-posed Boussinesq Paradigm with Purely Spatial Higher-order Derivatives, Physical Review, E54: 3621–3638.Google Scholar
  11. Dascalu C. and Maugin G..A., (1993), Forces matérielles et taux de restitution de l’énergie dans les corps élastiques avec défauts, C.R.Acad.Sci.Paris, II - 317: 1135–1140.Google Scholar
  12. Dascalu C. and Maugin G.A., (1994), Energy of Elastic Defects; A Distributional Approach, Proc. Roy. Soc. Lond., A445: 23–37CrossRefMATHGoogle Scholar
  13. Dascalu C. and Maugin G.A., (1995), Thermoelastic Material-momentum Equation, J.Elasticity, 39: 237–255.MathSciNetGoogle Scholar
  14. Elzanowski M., Epstein M. and Sniatycki J., (1990), G-structures and Material Inhomogeneities, J Elasticity, 23: 167–180.MathSciNetCrossRefMATHGoogle Scholar
  15. Elzanowski M. and Epstein M., (1992), On the Symmetry Group of Second-grade Materials, Int.J.Nonlinear Mech., 27: 638–645.MathSciNetGoogle Scholar
  16. Epstein M. and de Leon M., (1993), On the Integrability of Second Order G-Structures with Applications to Continuous Theories of Dislocations, Rep. Math.Phys., 33: 419–436.MathSciNetCrossRefMATHGoogle Scholar
  17. Epstein. M. and de Leon M., (1996), The Geometry of Uniformity in Second-grade Elasticity, Acta Mechanica, 114: 217–224.MathSciNetCrossRefGoogle Scholar
  18. Epstein M and Maugin G.A., (1990), The Energy-momentum Tensor and Material Uniformity in Finite Elasticity, Acta Mechanica, 83: 127–133.MathSciNetCrossRefMATHGoogle Scholar
  19. Epstein M. and Maugin G.A., (1995a), Thermal Material Force: Definition and Geometric Aspects, C. R.Acad Sci. Paris, II - 320: 63–68.Google Scholar
  20. Epstein M. and Maugin G.A., (1996), Geometrical Material Structure of Finite-strain Elasticity and Anelasticity, Zeit.angew.Math.Mech., 76: S4, 125–128.Google Scholar
  21. Epstein M. and Maugin G.A., (1997), Notions of Material Uniformity and Inhomogeneity, in: Theoretical and Applied Mechanics (Proc.ICTAM, Kyoto, 1996 ), Eds. Tatsumi T., Watanabe E., and Kambe T, Amsterdam: Elsevier. 201–215.Google Scholar
  22. Epstein M. and Maugin G.A., (1999), Elements of a Theory of Growth, in: Continuum Models and Discret Systems (CMDS9), Eds.E.Inan and K.Z.Markov, Singapore: World Scientific. 555–561.Google Scholar
  23. Epstein M. and Maugin G.A., (2000), Thermomechanics of Volumetric Growth in Uniform Bodies, Int.J.Plasticity, 16: 1–28.CrossRefGoogle Scholar
  24. Ericksen J.L., (1977), Special Topics in Elastostatics, in: Advances in Applied Mechanics, Vol. 17, ed. C.S.Yih, Newn York: Academic Press. 189–244.Google Scholar
  25. Eringen A.C., (1999), Microcontinuum Field Theories, I Foundations and Solids, New York: Springer-Verlag.Google Scholar
  26. Eshelby J.D., (1951), The Force on an Elastic Singularity, Phil. Trans.Roy.Soc.Lond., A244: 87–112.MathSciNetCrossRefMATHGoogle Scholar
  27. Eshelby J.D., (1970), Energy Relations and the Energy-momentum Tensor in Continuum Mechanics, in: Inelastic Behavior of Solids, Eds.M.F.Kanninen, W.F.Adler, A.R.Rosenfeld and R.I.Jaffee, New York: McGraw Hill. 77–114.Google Scholar
  28. Eshelby J.D., (1975), The Elastic Energy-momentum Tensor, ’Elasticity, 5: 321–335.MathSciNetCrossRefMATHGoogle Scholar
  29. Fomethe A. and Maugin G.A., (1996), Material Forces in Thermoelastic Ferromagnets, Cont.Mech.Thermodynam., 8: 275–292.MathSciNetCrossRefMATHGoogle Scholar
  30. Germain P., (1972), Shock Waves, Jump relations and Structures, in: Advances in Applied Mechanics, ed.C.S.YihNew York: Academic Press. 131–194.Google Scholar
  31. Germain P., (1992), Toward an Analytical Mechanics of materials, in: Nonlinear Thermodynamical Processes in Continua, Eds.W.Muschik and G.A.Maugin, Berlin: TUB-Dokumentation und Tagungen, Heft 61. 198–212.Google Scholar
  32. Germain P., (1998), Functional Concepts in Continuum Mechanics, Meccanica, 33: 433–444.MathSciNetCrossRefMATHGoogle Scholar
  33. Greg W.R., (1862), Why are Women Redundant ?, National Review (reprinted in Greg W.R., Literary and Social Judgements, London, 1863; also as a separate pamphlet, 1869 ).Google Scholar
  34. Grinfeld M., (1991), Thermodynamic Methods in the Theory of Heterogeneous Media, ISIMM SeriesHarrow, Essex: Longman.Google Scholar
  35. Gurtin M.E., (1993), The Dynamics of Solid-solid Phase Transitions.I. Coherent Interfaces, Arch.Rat.Mech.Anal., 123: 305–335.MathSciNetCrossRefMATHGoogle Scholar
  36. Gurtin M.E., (1999), Configurational Forces as Basic Concepts of Continuum Physics, New York: Springer-Verlag.Google Scholar
  37. Haddi A. and Weichert D., (1995), On the Computation of the J-integral for Three-dimensional Geometries in Inhomogeneous Materials, Comput.Mech.Sci., 5: 143–150.Google Scholar
  38. Hill R., (1986), Energy-momentum Tensor in Elastostatics: General Reflections on the General Theory, J.Mech.Phys.Sol., 34: 305–317.CrossRefMATHGoogle Scholar
  39. Imatani S. and Maugin G.A., (2000), A Constitutive Model for Growing Materials and Its Application to Finite-element Analysis, Trans.ASME.JAppl. Mech. (submitted).Google Scholar
  40. Kivshar Yu.S. and Malomed B.A., (1989), Dynamics of Solitons in Nearly Integrable Systems, Rev. Mod Phys., 61: 763–915.CrossRefGoogle Scholar
  41. Knowles J.K. and Sternberg E., (1972), Class of Conservation Laws in Linearized and Finite Elasticity, Arch.Rat. Mech.Anal., 44: 187–211.MathSciNetMATHGoogle Scholar
  42. Lubliner J., (1990), Plasticity Theory, McMillan, New York.MATHGoogle Scholar
  43. Mandel J., (1966), Cours de mécanique des milieux continus, Vol. I, Paris: Gauthier-Villars.MATHGoogle Scholar
  44. Mandel J.,(1971), Plasticité classique et viscoplasticité,(CISM Lecture Notes, Udine, Italy), Wien: Springer-Verlag.Google Scholar
  45. Maugin G.A., (1980), Principle of Virtual Power in Continuum Mechanics: Application to Coupled Fields, Acta Mechanica, 35: 1–70.MathSciNetCrossRefMATHGoogle Scholar
  46. Maugin G.A., (1988), Continuum Mechanics of Electromagnetic Solids, Amsterdam: North-Holland.MATHGoogle Scholar
  47. Maugin G.A., (1990a), Balance Law of Pseudomomentum in the Mechanics and Electrodynamics of Continua (in French), C.R.Acad.Sci.Paris, II - 311: 763–768.Google Scholar
  48. Maugin G.A., (1990b), Internal Variables and Dissipative Structures, J.Non-Eguilibr. Thermodynam., 15: 173–192.Google Scholar
  49. Maugin G.A., (1992a), The Thermomechanics of Plasticity and Fracture, Cambridge University Press: Cambridge, U.K.CrossRefMATHGoogle Scholar
  50. Maugin G.A., (1992b), Application of an Energy-momentum Tensor in Nonlinear Elastodynamics: Pseudomomentum and Eshelby Stress in Solitonic Elastic Systems, J.Mech.Phys.Solids, 40: 1543–1558.MathSciNetCrossRefMATHGoogle Scholar
  51. Maugin G.A., (1993), Material Inhomogeneities in Elasticity, London: Chapman and Hall.MATHGoogle Scholar
  52. Maugin G.A., (1994), Eshelby Stress in Elastoplasticity and Ductile Fracture, Int.J.Plasticity, 10: 393–408.CrossRefMATHGoogle Scholar
  53. Maugin G.A., (1995), Material Forces: Concepts and Applications, ASME. Appl.Mech. Rev., 48: 213–245.MathSciNetGoogle Scholar
  54. Maugin G.A., (1996a), On Ericksen’s Identity and Material Balance Laws in Thermoelasticity and Akin Phenomona, in: Contemporary Research in the Mechanics and Mathematics of Materials ( Ericksen’s Anniversary Volume ), Eds. R.C.Batra and M.F.Beatty, Barcelona: C.I.M.N.E. 397–407.Google Scholar
  55. Maugin G.A., (1996b), Variations on a Theme of Griffith, in: Fracture: A Topical Encyclopedia of Current Knowledge Dedicated to Alan Arnold Griffith, ed. G.P. Cherepanov, Melbourne, Florida: Krieger (published 1998 ). 517–536.Google Scholar
  56. Maugin G.A., (1997a), Thermomechanics of Inhomogeneous-heterogeneous Systems: Application to the Irreversible Progress of Two-and Three-dimensional Defects, ARI (Springer-Verlag), 50: 41–56.Google Scholar
  57. Maugin G.A., (1997b), On Shock Waves and Phase-transition Fronts in Continua, ARI (Springer-Verlag), 50: 141–150.Google Scholar
  58. Maugin G.A., (1998a), On the Structure of the Theory of Polar Elasticity, Phil. Trans. Roy.Soc.Lond., 356: 1367–1395.MathSciNetCrossRefMATHGoogle Scholar
  59. Maugin G.A., (1998b), Thermomechanics of Forces Driving Singular Sets, Arch.Mech., 50: 509–519.MathSciNetMATHGoogle Scholar
  60. Maugin G.A., (1998c), The Role of Canonical Balance Laws in the Study of the Progress of « Defects » in Microstructured Materials, J.Phys.IV (France), 8: Pr8–231-Pr8–237.Google Scholar
  61. Maugin G.A., (1999a), The Thermomechanics of Nonlinear Irreversible Behaviors, Singapore and River- Edge, N.J: World Scientific..Google Scholar
  62. Maugin G.A., (1999b), Nonlinear Waves in Elastic Crystals, U.K.: Oxford University Press.MATHGoogle Scholar
  63. Maugin G.A., (2000a), On the Universality of the Thermomechanics of Forces Driving Singular Sets, Arch.Appl.Mech., 70: 31–45.CrossRefMATHGoogle Scholar
  64. Maugin G.A., (2000b), Multiscale Approach to a Basic Problem of Materials Mechanics (Propagation of Phase-transition Fronts) in: Multifield Problems (Proc. Intern.Conf. Stuttgart, Oct. 1999), ed. W.G.Wendland, Berlin: Springer-Verlag. 11–22.Google Scholar
  65. Maugin G.A. and Berezovski A., (1999), Material Formulation of Finite-strain Thermoelasticity and Applications, J. Thermal Stresses, 22: 421–449.MathSciNetCrossRefGoogle Scholar
  66. Maugin G.A. and Christov C.I., (1997), Nonlinear Duality Between Elastic waves and Quasi-Particles in Microstructured Solids, Proc.Est.Acad.Sci., A46: 78–84 ( Proc.EUROMECH Colloquium, Tallinn, Estonia ).Google Scholar
  67. Maugin G.A. and Christov C.I., (2000), Nonlinear waves and Conservation Laws (Nonlinear Duality Between Elastic waves and Quasi-particles), in: Nonlinear Wave Phenomena,Eds. A.Guran and J.L.Wegner, Boston: Birkhauser (in press).Google Scholar
  68. Maugin G.A. and Epstein M., (1998), Geometrical Material Structure of Elastoplasticity, Int.J.Plasticity, 14: 109–115.CrossRefMATHGoogle Scholar
  69. Maugin G.A. and Inoue T.,(1998), Progress of Phase Boundaries and Walls in Thermo-deformable Solids: A Canonical Approach, J.Phys.IV (France),9: Pr9–351-Pr9–360.Google Scholar
  70. Maugin G.A., Inoue T. and Imatani S., (1999), Configurational or « Material Force of Inhomogeneity» at interfaces in Composites, Trans.Jap.Soc.Mech.Engngn. (pending publication)Google Scholar
  71. Maugin G.A. and Miled A., (1986a), Solitary Waves in Elastic Ferromagnets, Physical Review, B33: 4830–4842.CrossRefGoogle Scholar
  72. Maugin G.A. and Miled A., (1986b), Solitary waves in Micropolar Elastic Crystals, Int.J.Engng.Sci., 24: 1477–1499.MathSciNetCrossRefMATHGoogle Scholar
  73. Maugin G.A. and Trimarco C., (1991), Pseudo-quantité de mouvement et milieux élastiques inhomogènes, C. R.Acad.Sci.Paris, II - 313: 851–856.Google Scholar
  74. Maugin G.A. and Trimarco C., (1992), Pseudo-momentum and Material Forces in Nonlinear Elasticity: Variational Approaches and Application to Brittle Fracture, Acta Mechanica, 94: 1–28.MathSciNetCrossRefMATHGoogle Scholar
  75. Maugin G.A. and Trimarco C., (1995a), Dissipation of Configurational Forces in Defective Elastic Solids, Arch.Mech., 47: 81–95.MathSciNetMATHGoogle Scholar
  76. Maugin G.A. and Trimarco C., (1995b), Dynamics of Configurational Forces at Phase-Transition Fronts, Meccanica, 30: 605–619.MathSciNetCrossRefMATHGoogle Scholar
  77. Maugin G.A. and Trimarco C., (1995c), Configurational Forces and Coherent Phase-transition Fronts in Thermoelastic Solids, in: Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics (IUTAM Symp. Nottinghma, 1994 ), Eds. D.F.Parker and A.H.England, Dordrecht: Kluwer. 345–350.Google Scholar
  78. Maugin G.A. and Trimarco C., (1995d), On Material and Physical Forces in Liquid Crystals, Int.J.Engng.Sci., 33: 1663–1678.MathSciNetCrossRefMATHGoogle Scholar
  79. Mindlin R.D. and Tiersten H.F., (1962), Effects of Couple Stresses in Linear Elasticity, Arch. Rat. Mech.Anal., 11: 415–448.MathSciNetCrossRefMATHGoogle Scholar
  80. Müller I., (1999), Eshelby Stress and Phase equilibrium, Theoretical and Applied Mechanics, 25: 77–89.MathSciNetMATHGoogle Scholar
  81. Muschik W., (1990), Aspects of Non-Equilibrium Thermodynamics, Singapore, and River Edge, N.J.: World Scientific.Google Scholar
  82. Nelson D.F., (1979), Electric, Optic and Acoustic Interactions in Dielectrics, New York: Wiley-Interscience.Google Scholar
  83. Noether (1918), Invariante Variationsproblem, Klg.Ges.Wissen.Nach. Göttingen, Math. Phys. Kl., 2: 235.Google Scholar
  84. Olver P.J., (1986), Applications of Lie Groups to Differential Equations, New York: Springer-Verlag.CrossRefMATHGoogle Scholar
  85. Potapov A.I and Pavlov I.S., (1995), Nonlinear Wave in ID Oriented media, Acoustic Letters, 19: 110–115.Google Scholar
  86. Pouget J. and Maugin G.A., (1984), Solitons and Electroacoustic Interactions in Ferroelectric Crystals-I, Physical Review, B30: 5306–5325.CrossRefGoogle Scholar
  87. Pouget J. and Maugin G.A., (1989), Nonlinear Dynamics of Oriented Elastic Solids J.Elasticity, 22: 135–55, 157–183.MathSciNetGoogle Scholar
  88. Rice J.R., (1968), Path-independent Integrals and the Approximate Analysis of Strain Concentratiosn by Notches and Cracks, Trans.ASME JAppl.Mech., 33: 379–385.CrossRefGoogle Scholar
  89. Rogula D., (1970), Variational Principle for Material Coordinates as Dependent Variables.Google Scholar
  90. Application in Relativistic Continuum Mechanics, Bull.Acad. Pol.Sci. Sér.Sci.Techn., XVII: 781–785.Google Scholar
  91. Rogula D., (1977), Forces in Material Space, Arch.Mech., 29: 705–715.MathSciNetMATHGoogle Scholar
  92. Soper D.E., (1976), Classical Field Theory, New York: J.Wiley.Google Scholar
  93. Steinmann P., (2000), Application of Material Forces to Hyperelastic Fracture Mechanics, III, Int.J.Solids Structures (in the press).Google Scholar
  94. Stolz C., (1989), Sur la propagation d’une ligne de discontinuité et la fonction génératrice de choc pour un solide anélastique, C.R.Acad.Sci.Paris, II - 308: 1–3.Google Scholar
  95. Stolz C., (1994), Sur le problème d’évolution thermomécanique des solides à changement brutal des caractéristiques, C.R.Acad.Sci.Paris, II - 318: 1425–1428.Google Scholar
  96. Suhubi E.S., (1975), Thermoelastic Solids, in: Continuum Physics, Vol.2, ed.A.C.Eringen, New York: Academic Press. 174–265.Google Scholar
  97. Toupin R.A., (1962), Elastic Materials with Couple-stresses, Arch.Rat.Mech.Anal., 11: 385–414.MathSciNetCrossRefMATHGoogle Scholar
  98. Trochidis A. and Polyzos B., (1994), Dislocation Annihilation and Acoustic Emission During Plastic Deformations of Crystals, J.Mech.Phys.Solids, 42: 1933–1944.CrossRefMATHGoogle Scholar
  99. Truesdell C.A. and Toupin R.A., (1960), The Classical Field Theories. In: Handbuch der Physics, Bd.III/a, ed.S.Flügge,Berlin: Springer-Verlag.Google Scholar
  100. Truskinowskii L.M., (1987), Dynamics of Non-equilibrium Phase Boundaries in a Heat Conducting Nonlinearly Elastic Medium, P. MM, 51: 777–784.Google Scholar
  101. Truskinowsky L.M., (1994), About the « Normal Growth » Approximation in the Dynamical Theory of Phase Transitions, Cont.Mech.Thermodynam., 6: 185–208.CrossRefGoogle Scholar
  102. Weichert D. and Schultz M., (1993),.1-integral Concept for Multi-phase Materials, Comput.Mat.Sci., 1: 241–248..Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Gérard A. Maugin
    • 1
  • Carmine Trimarco
    • 2
  1. 1.Laboratoire de Modélisation en MécaniqueUniversité Pierre et Marie CurieParisFrance
  2. 2.Dipartimento di Matematica Applicata « U.Dini »Università di PisaItaly

Personalised recommendations