Conservation Laws and Their Application in Configurational Mechanics

  • G. Herrmann
  • R. Kienzler
Part of the International Centre for Mechanical Sciences book series (CISM, volume 427)


Conservation laws play a leading role in establishing the necessary mathematical apparatus for the analysis of various problems in configurational mechanics. Two essentially different, yet related methodologies are offered for the establishment of such laws and those methologies are then applied to several simple one-dimensional problems, as well as to plane elastostatics and elastodynamics.


Strain Energy Density Lagrangian Function Double Cantilever Beam Inhomogeneous Material Material Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bessel-Hagen, E. (1921). Über die Erhaltungssätze der Elektrodynamk. Mathematische Annalen 84: 258–276.MathSciNetCrossRefMATHGoogle Scholar
  2. Bluman, G.W., and Kumai, S. (1989). Symmetries and Differential Equations. Applied Mathematical Sciences No. 81, New York: Springer.Google Scholar
  3. Chien, N. (1992). Conservation laws in non-homogeneous and dissipative mechanical systems. Ph.D. Thesis, Stanford University, Stanford CA.Google Scholar
  4. Chien, N., Honein, T., and Herrmann, G. (1993). Conservation laws for linear viscoelasticity. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 44: 44–52.MathSciNetCrossRefMATHGoogle Scholar
  5. Delale, F., and Erdogan, F. (1983). The crack problem for a nonhomogeneous plane. Journal of Applied Mechanics 50: 609–614.CrossRefMATHGoogle Scholar
  6. Eischen, J.W. (1987). Fracture of nonhomogeneous materials. International Journal of Fracture 34: 3–22.Google Scholar
  7. Erdogan, F. (1983). Stress intensity factors. Journal of Applied Mechanics 50: 992–1002.CrossRefMATHGoogle Scholar
  8. Euler, L. (1744). Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti, Additamentum I: De curvis elasticis. Lausanne: Bousquet, M.M. and Socios.Google Scholar
  9. Gelfand, I.M., and Fomin, S.V. (1963). Calculus of Variations. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  10. Günther, W. (1962). Über einige Randintegrale der Elastomechanik. Abhandlung der Braunschweiger wissenschaftlichen Gesellschaft 14: 53–72.MATHGoogle Scholar
  11. Herrmann, G. (1980). Some applications of invariant variational principles in mechanics of solids. In: Nemat-Nasser, S., ed., Variational Methods in the Mechanics of Solids. Oxford: Pergamon. 145–150.CrossRefGoogle Scholar
  12. Honein, T., Chien, N., and Herrmann, G. (1991). On conservation laws for dissipative systems. Phvssics Letters A 155: 223–224.MathSciNetGoogle Scholar
  13. Honein, T., and Herrmann, G. (1997). Conservation laws in non-homogeneous plane elastostatics. Journal of Mechanics and Physics of Solids 45: 789–805.MathSciNetCrossRefMATHGoogle Scholar
  14. Kienzler, R. (1993). Konzepte der Bruchmechanik. Braunschweig: Vieweg.Google Scholar
  15. Kienzler, R., and Herrmann, G. (2000). Mechanics in Material Space. Berlin: Springer.CrossRefMATHGoogle Scholar
  16. Knowles, J.K., and Sternberg, E. (1972). On a class of conservation laws in linearized and finite elastostatics. Archive of Rational Mechanics and Analysis 44: 187–211.MathSciNetMATHGoogle Scholar
  17. Morse, P.M., and Feshbach, H. (1953). Methods of Theoretical Physics. New York: McGraw-Hill.MATHGoogle Scholar
  18. Noether, E. (1918). Invariante Variationsprobleme. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 2: 235–257.Google Scholar
  19. Olver, P.J. (1993). Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics, No 107. New York: Springer, 2nd. edition.Google Scholar
  20. Rice. J.R. (1968). A path indepenent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 35: 379–386.CrossRefGoogle Scholar
  21. Williams, M.L. (1957). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics 24: 109–144.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • G. Herrmann
    • 1
  • R. Kienzler
    • 2
  1. 1.Stanford UniversityStanfordUSA
  2. 2.University of BremenBremenGermany

Personalised recommendations