Advertisement

Turbulent Drag-Reduction Mechanisms: Strategies for Turbulence Management

  • Kwing-So Choi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 415)

Abstract

Recent developments in turbulent drag-reduction research using riblets, spanwisewall oscillation and compliant coating are sketched here together with some experimental results. Views on drag reduction mechanisms are then given using the evidence derived from these experimental results. In all cases being studied here, only the surface boundary conditions of turbulent boundary layers were change by the devices. Consequently, the manipulation of the boundary layer was conducted through a modification of the near-wall turbulence structure. Indeed, it was found that an effective modification of counter-rotating longitudinal vortices is a key to the successful strategy for turbulent drag reduction. The strength of near-wall vortices was reduced by these devices to give rise to weaker burst events, leading to reductions in turbulent wall-skin friction.

Keywords

Turbulent Boundary Layer Drag Reduction Viscous Sublayer Hairpin Vortex Longitudinal Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhavan, R., Kamm, R. D., and Shapiro, A. H. (1991). An investigation of transition to turbulence in bounded oscillatory stokes flows, Part 1. Experiments. J. Fluid Mech. 225: 395–422.CrossRefGoogle Scholar
  2. Anders, J. B. (1990). Outer-layer manipulators for turbulent drag reduction. In Bushnell, D. M, and Hefner, J. N., eds., Viscous Drag Reduction in Boundary Layers, Progress in Astronautics and Aeronautics. Washington, DC: AIAA. 123: 263–284.Google Scholar
  3. Antonia, R.A. (1981). Conditional sampling in turbulence measurement. Ann. Rev. Fluid Mech. 13: 13 1156.Google Scholar
  4. Bacher, E. V., and Smith, C. R. (1985). A combined visualisation-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modification. AIAA Paper 85–0548.Google Scholar
  5. Bandyopadhyay, P. R. (1986). Review — Mean flow in turbulent boundary layers disturbed to alter skin friction. Trans. ASME I: J. Fluids Engng. 108 (2): 127–140.Google Scholar
  6. Baron, A., and Quadrio, M. (1993). Some preliminary results on the influence of riblets on the structure of a turbulent boundary layer. Int. J. Heat Fluid Flow 14 (3): 223–230.CrossRefGoogle Scholar
  7. Baron, A., and Quadrio, M. (1996). Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55: 311–326.MATHCrossRefGoogle Scholar
  8. Baron, A, and Quadrio, M. (1997). Turbulent boundary layer over riblets: conditional analysis of ejection-like events. Intl. J. Heat Fluid Flow. 18 (2): 188–196.MathSciNetCrossRefGoogle Scholar
  9. Baron, A., Quadrio, M., and Vigevano, L. (1993). On the boundary layer/riblets interaction mechanisms and the prediction of turbulent drag reduction. Int. J. Heat Fluid Flow 14 (4): 324–332.CrossRefGoogle Scholar
  10. Bechert, D. W. (1997). Biological surfaces and their technological application–laboratory and flight experiments on drag reduction and separation control. AIAA Paper 97–1960.Google Scholar
  11. Bechert, D. W., and Bartenwerfer, M. (1989). The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206: 105–129.CrossRefGoogle Scholar
  12. Bechert, D. W., Bartenwerfer, M., Hoppe, G., and Reif, W.-E. (1986). Drag reduction mechanisms derived from shark skin. In Proc. 15 th Congress, International Council of the Aeronautical Sciences. London. Paper 86–1. 8. 3.Google Scholar
  13. Bechert, D. W., Bruse, M., Hage, W., van der Hoeven, J. G. T., and Hoppe, G. (1997). Experiments on drag-reducing surfaces and their optimisation with an adjustable geometry. J. Fluid Mech. 338: 59–87.CrossRefGoogle Scholar
  14. Bechert, D. W., Hoppe, G., and Reif, W.-E. (1985). On the drag reduction of the shark skin. AIAA Paper 85–0548.Google Scholar
  15. Bechert, D. W., Hoppe, G., van der Hoeven, J. G. T., and Makris, R. (1992). The Berlin oil channel for drag reduction research. Exp. Fluids 12: 251–260.Google Scholar
  16. Benjamin, T. B, (1964). Fluid flow with flexible boundaries. In Görtler, H., ed., Proc. 11“’ Int. Cong. on Application of Mathematics. Berlin: Springer. 109–128.Google Scholar
  17. Blackwelder, R. F., and Kaplan, R. E. (1976). On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76: 89–112.CrossRefGoogle Scholar
  18. Blick, E. F., and Walters, R. R. (1968). Turbulent boundary layer characteristics of compliant surfaces. J. Aircraft. 5: 11–16.CrossRefGoogle Scholar
  19. Blick, E. F., Walters, R. R., Smith, R., and Chu, H. (1969). Compliant coating skin friction experiments. AIAA Paper 69–165.Google Scholar
  20. Boiko, A. V., Kozlov, V. V., Scherbakov, V. A., and Syzrantsev, V. V. (1997). Transition control by riblets in a swept wing boundary layer with an embedded streamwise vortex. European J. Mechanics B 16 (4): 465–482.MATHMathSciNetGoogle Scholar
  21. Bradshaw, P., and Pontikos, N. S. (1985). Measurements in a turbulent boundary layer on an infinite swept wing. J. Fluid Mech. 159: 105–130.CrossRefGoogle Scholar
  22. Brown, G. L., and Roshko, A. (1974). On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64: 775–816.CrossRefGoogle Scholar
  23. Bruse, M., Bechert, D. W., van der Hoeven, J. G. T., Hage, W., and Hoppe, G. (1993). Experiments with conventional and novel adjustable drag-reducing surfaces. In So, R. M. C., Speziale, C. G., and Launder, B. E., eds., Near-Wall Turbulent Flows. Amsterdam: Elsevier. 719–738.Google Scholar
  24. Bushnell, D. M., and Hefner, J. N. (1990). Viscous Drag Reduction in Boundary Layers. Washington, DC: AIAA.CrossRefGoogle Scholar
  25. Bushnell, D. M., and McGinley, C. B. (1989). Turbulent control in wall flows. Annu. Rev. Fluid Mech. 21: 1–20.Google Scholar
  26. Carlson, H. A., and Lumley, J. L. (1996). Active control in the turbulent boundary layer of a minimal flow unit. J. Fluid Mech. 329: 341–371.MATHCrossRefGoogle Scholar
  27. Carpenter, P. W. (1993). Optimisation of multiple-panel compliant walls for delay of laminar-turbulent transition. AIAA J. 31: 1187–1188.CrossRefGoogle Scholar
  28. Choi, H., Moin, P., and Kim, J. (1993). Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255: 503–539.MATHMathSciNetCrossRefGoogle Scholar
  29. Choi, H., Moin, P, and Kim, J. (1994). Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262: 75–110.MATHCrossRefGoogle Scholar
  30. Choi, K.-S. (1987). On physical mechanisms of turbulent drag reduction using riblets. In Hirata, M., and Kasagi, N., eds., Transport Phenomena in Turbulent Flows. New York: Hemisphere. 185–198.Google Scholar
  31. Choi, K.-S. (1989). Near-wall structure of turbulent boundary layer with riblets. J. Fluid Mech. 208:417–458.Google Scholar
  32. Choi, K.-S. (1990). Effects of longitudinal pressure gradients on turbulent drag reduction with riblets. In Coustols, E., ed., Turbulence Control by Passive Means. Dordrecht: Kluwer. 109–121.CrossRefGoogle Scholar
  33. Choi, K.-S. (1991). Recent Developments in Turbulence Management. Dordrecht: Kluwer.MATHCrossRefGoogle Scholar
  34. Choi, K.-S. (1993). Breakdown of the Reynolds analogy over drag-reducing riblets surface. Appl. Sci. Res. 51: 149–155.Google Scholar
  35. Choi, K.-S. (1996). Turbulent drag reduction strategies. In Choi, K.-S., Prasad, K. K., and Truong, T. V., eds., Emerging Techniques in Drag Reduction. London: MEP. 77–98.Google Scholar
  36. Choi, K.-S., DeBisschop, J.-R., and Clayton, B. R. (1998). Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36 (7): 1157–1163.CrossRefGoogle Scholar
  37. Choi, K.-S., and Graham, M. (1998). Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys, Fluids. 10 (1): 7–9.CrossRefGoogle Scholar
  38. Choi, K.-S., and Hamid, S. (1991). Heat transfer study of riblets. In Choi, K.-S., ed., Recent Developments in Turbulence Management. Dordrecht: Kluwer. 25–41.CrossRefGoogle Scholar
  39. Choi, K.-S., and Orchard, D. M. (1997). Turbulence management using riblets for heat and momentum transfer. Int. J. Exp. Thermal Fluid Sci. 15 (2): 109–124.CrossRefGoogle Scholar
  40. Choi, K.-S. Pearcey, H. H., and Savill, A. M., (1987). Test of drag reducing riblets on a one-third scale racing yacht. Proc. Int. Conf. On Turbulent Drag Reduction by Passive Means, London.Google Scholar
  41. Choi, K.-S., Prasad, K. K., and Troung, ‘f. V. (1996). Emerging Techniques in Drag Reduction. London: MEP.Google Scholar
  42. Choi, K.-S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N., and Kulik, V. M. (1997). Turbulent drag reduction using compliant surfaces. Proc. Royal Society. A453: 2229–2240.MATHCrossRefGoogle Scholar
  43. Chu, D. C., and Karniadakis, G. E. M. (1993). A direct simulation of laminar and turbulent flow over riblet-mounted surfaces. J. Fluid Mech. 250: 1–42.CrossRefGoogle Scholar
  44. Chung, K. H., and Merrill, E. W. (1984). Drag reduction by compliant surfaces measured on rotating discs. Proc. Compliant Coating Drag Reduction Program Review Meeting. Washington, DC: Office of Naval Research.Google Scholar
  45. Clark, D. G. (1990). Multiple light-plane flow visualisation of the structure within riblets. In Coustols, E., ed., Turbulence Control by Passive Means. Dordrecht: Kluwer. 79–96.CrossRefGoogle Scholar
  46. Cooper, A. J., and Carpenter, P. W. (1997). Stability of rotating-disc boundary-layer flow over a compliant wall. Part 1. Type I and II Instabilities. J. Fluid Mech. 350: 231–259.MATHMathSciNetCrossRefGoogle Scholar
  47. Coustols, E. (1990). Turbulence control by passive means. Dordrecht: Kluwer.CrossRefGoogle Scholar
  48. Coustols, E. (1996). Riblets: Main known and unknown features. In Choi, K.-S., Prasad, K. K., and Truong, T. V., eds., Emerging Techniques in Drag Reduction. London: MEP. 3–43.Google Scholar
  49. Coustols, E., and Cousteix, J. (1988). Turbulent boundary layer manipulation in zero pressure gradient. 16`“ Congress of the Int. Council of the Aeronautical Sciences, Jerusalem.Google Scholar
  50. Coustols, E., and Cousteix, J. (1994). Performance of riblets in the supersonic regime. AIAA J. 32(2):431433.Google Scholar
  51. Coustols, E., and Savill, M. (1992). Turbulent skin-friction reduction by active and passive means. AGARD R-786:8. 1–8. 80.Google Scholar
  52. Davies, C., and Carpenter, P. W. (1997). Numerical simulation of the evolution of Tollmien-Schlichting waves. J. Fluid Mech. 335: 361–392.MATHMathSciNetCrossRefGoogle Scholar
  53. Dean, R. B. (1976). A single formula for the complete velocity profile in a turbulent boundary layer. J. Fluids Eng. 98 (4): 723–727.MathSciNetCrossRefGoogle Scholar
  54. DeBisschop, J. R., and Nieuwstadt, F. T. M. (1996). Turbulent boundary layer in an adverse pressure gradient. AIM J. 34 (5): 932–937.Google Scholar
  55. Dimotakis, P. E., Lye, R. C., and Papantoniou, D. Z. (1982). In Van Dyke, M., ed., Album of Fluid Motion. Stanford: Parabolic Press.Google Scholar
  56. Dixon, A. E., Lucey, A. D., and Carpenter, P. W. (1994). Optimisation of viscoelastic compliant walls for transition delay. AIAA J. 32: 256–267.MATHCrossRefGoogle Scholar
  57. Djenidi, L., Anselmet, F., Liandrat, J., and Fulachier, L. (1994). Boundary layer over riblets. Phys. Fluids 6 (9): 2993–2999.CrossRefGoogle Scholar
  58. Durst, F., Jovanovic, J., and Sender, J. (1995). LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech. 295: 305–335.Google Scholar
  59. Falco, R. E. (1991). A coherent structure model of the turbulent boundary layer and its stability to predict Reynolds number dependence. Phil. Trans. Royal Soc. London A336: 103–130.MATHGoogle Scholar
  60. Falco, R. E., and Chu, C. C. (1984). Measurements of local skin-friction reduction on elastic compliant surfaces. Proc. Compliant Coating Drag Reduction Program Review Meeting. Washington, DC: Office of Naval Research.Google Scholar
  61. Ferry, J. D. (1961). Viscoelastic Properties of Polymers. New York: Wiley.Google Scholar
  62. Gad-el-Hak, M. (1986). Boundary layer interactions with compliant coatings: an overview. Appl. Mech. Rev. 3: 511–524.CrossRefGoogle Scholar
  63. Gad-el-Hak, M., Blackwelder, R. F., and Riley, J. J. (1984). On the interaction of compliant coatings with boundary-layer flows. J. Fluid Mech. 140: 257–280.CrossRefGoogle Scholar
  64. Gallagher, J. A., and Thomas, A. S. W. (1984). Turbulent boundary layer characteristics over streamwise grooves. AIAA Paper 84–2185.Google Scholar
  65. Gaster, M. (1988). Is the dolphin a red herring? In Liepman, H. W., and Narasimha, R., eds., Turbulence Management and Relaminarisation. Berlin: Springer-Verlag. 285–304.CrossRefGoogle Scholar
  66. Gaudet, L. (1987). An assessment of the drag reduction properties of riblets and the penalties of off design conditions. RAE Tech. Memo. Aero. 2113.Google Scholar
  67. Grant, H. L. (1958). The large eddies of turbulent motion. J. Fluid Mech. 4: 149–190.CrossRefGoogle Scholar
  68. Grek, G. R., Kozlov, V. V., and Titarenko, S. V. (1996). Experimental study of the influence of riblets on transition. J. Fluid Mech. 315: 31–49.CrossRefGoogle Scholar
  69. Head, M. R., and Bandyopadhyay, P. (1981). New aspects of turbulent boundary layer structure, J. Fluid Mech. 107: 297–338.CrossRefGoogle Scholar
  70. Hefner, J. N., and Weinstein, L. M. (1976). Re-examination of compliant wall experiments in air with water substrates. J. Spacecr. Rocket. 13:502–503.Google Scholar
  71. Hooshmad, D., Youngs, R. A., Wallace, J. M., and Balint, J.-L. (1983). An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes. AIAA Paper 83–0230.Google Scholar
  72. Hough, G. R. (1980). Viscous Flow Drag Reduction. Washington, DC: AIAA.CrossRefGoogle Scholar
  73. Jimenez, J., and Pinelli, A. (1997). Wall turbulence: How it works and how to damp it. AIAA Paper 972112.Google Scholar
  74. Jimenez, J., and Pinelli, A. (1998). The role of coherent structure interactions in the regeneration of wall turbulence. Proc 7` h European Turbulence Conf. Saint Jean Cap Ferrat, France.Google Scholar
  75. Jung, W. J., Mangiavacchi, N., and Akhavan, R. (1992). Suppression of turbulence in wall-hounded flows by high frequency spanwise oscillations. Phys. Fluids. A4 (8): 1605–1607.CrossRefGoogle Scholar
  76. Kim, H. T., Kline, S. J., and Reynolds, W. C. (1971). The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50 (1): 133–160.CrossRefGoogle Scholar
  77. Kim, J. (1983). On the structure of wall-bounded turbulent flows. Phys. Fluids. 26 (8): 2088–2097.MATHCrossRefGoogle Scholar
  78. Kim, J. (1985). Turbulent structures associated with the bursting event. Phys. Fluids. 28(1):52–58.Google Scholar
  79. Kim, J. and Moin, P. (1986). The structure of the vorticity field in turbulent channel flow, Part 2. Study of ensemble-averaged fields. J. Fluid Mech. 162:339–363.Google Scholar
  80. Kim, J., Moin, P., and Moser, R. (1987). Turbulent statistics in fully-developed channel flow at low Reynolds number. J. Fluid Mech. 177:133–166.Google Scholar
  81. Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W. (1967). The structure of turbulent boundary layers. J. Fluid Mech. 30 (4): 741–773.CrossRefGoogle Scholar
  82. Kozlov, V. V. (1997). Effect of riblets on flow-structures at laminar-turbulent transition and simulation of their influence on turbulent boundary layer. Proc. JO“ European Drag Reduction Meeting, Berlin.Google Scholar
  83. Kramer, M. O. (1957). Boundary layer stabilisation by distributed damping. J. Aero. Sci. 24: 459–460.Google Scholar
  84. Kramer, M. O. (1960). Boundary layer stabilisation by distributed damping. J. Am. Soc. Nay. Engr. 72: 25–33.Google Scholar
  85. Kramer, M. O. (1961). The dolphin’s secret. J. Am. Soc. Nay. Engr. 73: 103–107.Google Scholar
  86. Kramer, M. O. (1962). Boundary layer stabilisation by distributed damping. J. Am. Soc. Nay. Engr. 74: 341–348.Google Scholar
  87. Kramer, M. O. (1965). Hydrodynamics of the dolphin. In Chow, V. T., ed., Advances in Hydroscience. New York: Academic. 2: 111–130.Google Scholar
  88. Kravchenko, A. G., Choi, H., and Moin, P. (1993). On the relationship of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys. Fluids. A5 (12): 3307–3309.CrossRefGoogle Scholar
  89. Kulik, V. M., Poguda, 1. S., and Semenov, B. N. (1991). Experimental investigation of one-layer viscoelastic coatings action on turbulent friction and wall pressure pulsations. In Choi, K.-S., ed., Recent Developments in Turbulence Management. Dordrecht: Kluwer. 263–289.CrossRefGoogle Scholar
  90. Kulik, V. M., and Semenov, B. N. (1996). The measurement of dynamic properties of viscoelastic materials for turbulent drag reduction. In Choi, K.-S., Prasad, K. K., and Truong, T. V., eds., Emerging Techniques in Drag Reduction. London: MEP. 207–217.Google Scholar
  91. Laadhari, F., Skandaji, L., and Morel, R. (1994). Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids. A6 (10): 3218–3220.CrossRefGoogle Scholar
  92. Lee, T., Fisher, M., and Schwarz, W. H. (1993). Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257: 373–401.CrossRefGoogle Scholar
  93. Lindemann, A. M. (1985). Turbulent Reynolds analogy factors for nonplanar surface microgeometries. J. Spacecraft. 22 (5): 581–582.CrossRefGoogle Scholar
  94. Looney, W. R., and Blick, E. F. (1966). Skin friction coefficients of compliant surfaces in turbulent flow. J. Spacecr. Rocket. 3: 1562–1564.CrossRefGoogle Scholar
  95. Lu. S. S., and Willmarth, W. W. (1973). Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60: 481–511.CrossRefGoogle Scholar
  96. Lucey, A. D., and Carpenter, P. W. (1992). A numerical simulation of the interaction of a compliant wall and inviscid flow. J. Fluid Mech. 234: 121–146.MATHCrossRefGoogle Scholar
  97. Luchini, P., Manzo, P., and Pozzi, A. (1991). Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228: 87–109.MATHGoogle Scholar
  98. Luchini, P., Manzo, F., and Pozzi, A. (1992). Viscous eddies over a grooved surface computed by a gaussian-integration galerkin boundary-element method. AIAA J. 30 (8): 2168–2170.CrossRefGoogle Scholar
  99. Luchini, P., and Pozzi, A. (1997). Computation of three-dimensional stokes flow over complicated surfaces (3D riblets) using a boundary independent grid and local corrections. 10` h European Drag Reduction Meeting, Berlin.Google Scholar
  100. Luchini, P., and Trombetta, G. (1995). Effects of riblets upon flow stability. Appl. Sci. Res. 54: 313–321.MATHCrossRefGoogle Scholar
  101. Lumley, J. L. (1973). Drag reduction in turbulent flow by polymer additives. J. Polymer Sci. D: Macro-mol. Rev. 7:263–290.Google Scholar
  102. McLean, J. D., George-Falvy, D. N., and Sullivan, P. P. (1987). Flight-test of turbulent skin-friction reduction by riblets. Proc. Intl Conf Turbulent Drag Reduction by Passive Means,London.Google Scholar
  103. McMichael, J. M., Klebanoff, P. S., and Mease,’ N. E. (1980). Experimental investigation of drag on a compliant surface. In Hough, G. R., ed., Viscous Flow Drag Reduction. Washington, DC: AIAA. 410–438.Google Scholar
  104. Moin, P., and Kim, J. (1982). Numerical investigation of turbulent channel flow. J. Fluid Mech. 118:341377.Google Scholar
  105. Moin, P., and Kim, J. (1985). The structure of the vorticity field in turbulent channel flow, Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155: 441–464.CrossRefGoogle Scholar
  106. Nieuwstadt, F. T. M., Wolthers, W., Leijdens, H., Prasad, K. K., and Schwarz-van Manen, A. D. (1991). Some further experiments on riblets surface in a towing tank. In Choi, K.-S., ed., Recent Developments in Turbulence Management. Dordrecht: Kluwer. 93–112.Google Scholar
  107. Offen, G. R., and Kline, S. J. (1975). A proposed model of the bursting process in turbulent boundary layers. J. Fluid Mech. 70: 209.CrossRefGoogle Scholar
  108. Orlandi, P. (1997). Helicity fluctuations and turbulent energy production in rotating and non-rotating pipes. Phys. Fluids 9 (7): 2045–2056.MATHMathSciNetCrossRefGoogle Scholar
  109. Orlandi, P., and Fatica, M. (1997). Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343: 43–72.MATHCrossRefGoogle Scholar
  110. Orlandi, P., and Jimenez, J. (1994). On the generation of turbulent wall friction. Phys. Fluids. A6(2): 634641.Google Scholar
  111. Pal, S., Deutsch, S and Merkle, C. L. (1989). A comparison of shear stress fluctuation statistics between microbubble modified and polymer modified turbulent boundary layers. Phys. Fluids A1(8): 13601362.Google Scholar
  112. Park, S.-R., and Wallace, J. M. (1993). Flow field alteration and viscous drag reduction by riblets in a turbulent boundary layer. In So, R. M. C., Speziale, C. G., and Launder, B. E., eds., Near-Wall Turbulent Flows. Amsterdam: Elsevier. 749–760.Google Scholar
  113. Payne, F. R., and Lumley, J. L. (1967). Large eddy structure of the turbulent wake behind a circular cylinder. Phys. Fluids S-10: 194–196.Google Scholar
  114. Pollard, A., Savill, A. M., Tullis, S., and Wang, X. (1996). Simulating turbulent flow over thin element and flat valley V-shaped riblets. AIAA. J. 34 (11): 2261–2268.MATHCrossRefGoogle Scholar
  115. Prasad, K. K. (1993). Further Developments in Turbulence Management. Dordrecht: Kluwer.MATHCrossRefGoogle Scholar
  116. Pulles, C. J. A. (1988). Drag Reduction of Turbulent Boundary Layers by Means of Grooved Surfaces. Ph.D. thesis, Technical University of Eindhoven.Google Scholar
  117. Robinson, S. K. (1990). A review of vortex structures and associated coherent motions in turbulent boundary layers. in Gyr, A., ed., Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag. 23–50.CrossRefGoogle Scholar
  118. Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23: 601–639.Google Scholar
  119. Sarpkaya, T. (1993). Coherent structures in oscillatory boundary layers. J. Fluid Mech. 253: 105–140.CrossRefGoogle Scholar
  120. Savill, D. M. (1990). Drag reduction by passive devices–A review of some recent development. In Gyr, A., ed., Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag. 429–465.CrossRefGoogle Scholar
  121. Schlichtirg, H. (1968). Boundary-LayerTheory. New York: McGraw Hill.Google Scholar
  122. Schoppa, W., and Hussain, F. (1998). A large-scale control strategy for drag reduction in turbulent boundary layers. Phys. Fluids 10 (5): 1049–1051.MATHMathSciNetCrossRefGoogle Scholar
  123. Schwarz, W. R., and Bradshaw, P. (1994). Turbulence structural changes for a three-dimensional turbulent boundary layer in a 30“ bend. J. Fluid Mech. 272: 183–209.CrossRefGoogle Scholar
  124. Schwarz-van Manen, A. D. (1992). Coherent Structure over Grooved Surfaces. Ph.D. Thesis, Technical University of Eindhoven.Google Scholar
  125. Semenov, B. N. (1991). On conditions of modelling and choice of viscoelastic coatings for drag reduction. in Choi, K.-S., ed., Recent Developments in Turbulence Management. Dordrecht: Kluwer. 241262.Google Scholar
  126. Sherman, F. S. (1990). Viscous flow. New York: McGraw-Hill. 137–140.Google Scholar
  127. Smith, C. R., and Metzler, S. P. (1983). The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129: 27–54.CrossRefGoogle Scholar
  128. Squire, L. C., and Savill, A. M. (1987). Some experiences of riblets at transonic speeds. Proc. Intl Conf. Turbulent Drag Reduction by Passive MeansLondon.Google Scholar
  129. Starling, I., and Choi, K.-S. (1997). Non-linear laminar-turbulent transition over riblets. Proc. Laminar flow workshop, Queen Mary and Westfield College, London.Google Scholar
  130. Sternberg, J. (1962). A theory for the viscous sublayer of a turbulent flow. J. Fluid Mech. 13: 241–271.MATHCrossRefGoogle Scholar
  131. Suzuki, Y., and Kasagi, N. (1994). Turbulent drag reduction mechanism above a riblet surface. AIAA J. 32: 1781–1790.CrossRefGoogle Scholar
  132. Tardu, S. F. (1995). Coherent structure and riblets. Appl. Sc. Res. 54 (4): 349–385.MATHCrossRefGoogle Scholar
  133. Taylor, T. D. (1983). Experimental and calculational results for compliant surface drag reduction. In Proc. Compliant Coating Drag Reduction Program Review Meeting. ‘Washington, DC: Office of Naval Research.Google Scholar
  134. Townsend, A. A. (1976). The Structure of Turbulent Shear Flow. Cambridge: Cambridge University Press.MATHGoogle Scholar
  135. Virk, P. S. (1975). Drag reduction fundamentals. A1ChEJ. 21: 625–656.Google Scholar
  136. Vukoslavcevis, P., Wallace, J. M., and Balint, J.-L. (1991). Viscous drag reduction using streamwise aligned riblets. AIAA J. 30 (4): 1119–1122.CrossRefGoogle Scholar
  137. Wallace, J. M. (1982). On the structure of bounded turbulent shear flow: a personal view. In Chung, T. J., and Karr, G. R., eds., Development in Theoretical and Applied Mechanics, Xl. University of Alabama, Huntsville, Alabama.Google Scholar
  138. Wallace, J. M., and Balint, J.-L. (1987). Viscous drag reduction using streamwise aligned riblets: Surveys and new results. In Liepmann, H. W., and Narasimha, R., eds., Turbulence Management and Relaminarisation. Berlin: Springer-Verlag. 133–147.Google Scholar
  139. Wallace, J. M., Eckelmann, H., and Brodkey, R. S. (1972), The wall region in turbulent shear flow. J. Fluid Mech. 54 (1): 39–48.CrossRefGoogle Scholar
  140. Walsh, M. J. (1980). Drag characteristics of V-groove and transverse curvature riblets. In Hough, G. R., ed., Viscous Drag Reduction. Washington, DC: AIAA. 168–184.Google Scholar
  141. Walsh, M. J. (1982). Turbulent boundary layer drag reduction using riblets. AIAA Paper 82–0169.Google Scholar
  142. Walsh, M. J. (1990). Riblets. In Bushnell, D. M., and Hefner, J. N., eds., Viscous Drag Reduction in Boundary Layers. Washington, DC: AIAA. 203–261.Google Scholar
  143. Walsh, M. J., and Lindeman, A.M. (1984). Optimisation and application of riblets for turbulent drag reduction. AIAA Paper 84–0347.Google Scholar
  144. Walsh, M. J., and Weinstein, L. M. (1979). Drag and heat transfer characteristics of small longitudinally ribbed surfaces. AIAA J. 17 (7): 770–771.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Kwing-So Choi
    • 1
  1. 1.School of Mechanical, Materials, Manufacturing Engineering and ManagementUniversity of NottinghamNottinghamUK

Personalised recommendations