Advertisement

Prospects for Modulation of Turbulent Boundary Layer by EHD Flows

  • Alfredo Soldati
  • Cristian Marchioli
Part of the International Centre for Mechanical Sciences book series (CISM, volume 415)

Abstract

In this paper, we present a review of the recent results obtained in the field of boundary layer modification using large-scale ElectroHydroDynamic (EHD) flows. EHD flows are a characteristic of Electrostatic Precipitators (ESPs) and the study of their interactions with the turbulent boundary layer may lead to optimization of ESPs from the viewpoint of drag reduction and particle collection efficiency. However, this study has a general relevance since EHD flows may be exploited in a number of industrial applications to modulate turbulence. In this work, we describe the principles of turbulence structure at the wall and then present results obtained for turbulent boundary layer forced by different configurations of EHD flows. Finally, we describe possible improvements and the optimization of the method.

Keywords

Channel Flow Reynolds Stress Turbulent Boundary Layer Drag Reduction Streamwise Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artana, G., D’Adamo, J., Legert, L., Moreau, E., and Touchard, G. (2001). Flow control with electrohydrodynamic actuators. AIM 2001–0351 39th Aerospace Sciences Meeting, January 8–11, 2001, Reno (NV).Google Scholar
  2. Baron, A., and Quadrio, M. (1995). Turbulent drag reduction by spanwise wall oscillations. Applied Scientific Research, 4, 311–326.Google Scholar
  3. Bernstein, S., and Crowe, C. T. (1981). Interaction of electrostatics and fluid dynamics in electrostatic precipitators. Environment International, 6, 181–200.CrossRefGoogle Scholar
  4. Beux, F., lollo, A., Salvetti, M. V., and Soldati, A. (2000). A POD approach for turbulent flow control by electro-hydrodynamic large-scale structures. ECCOMASS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, Spain, Sept. 11–14, 2000.Google Scholar
  5. Beux, E, Iollo, A., Salvetti, M. V., and Soldati, A. (2000). Approximation and reconstruction of the electrostatic field in wire-plate precipitators by a low-order model. Journal of Computational Physics, (Submitted).Google Scholar
  6. Bonnet, J. P., and Delville, J. (1996). General concepts on structure identification. In Bonnet, J. P., ed., Eddy Structure Identification, Springer-Verlag, Wien, 1–59.Google Scholar
  7. Bonnet, J. P., Delville, J., Glauser, M. N., Antonia, R. A., Bisset, D. K., Cole, D. R., Fiedler, H. E., Garem, J. H., Hilberg, D., Jeong, J., Kevlahan, N. K. R., Ukeiley, L. S., and Vicendeau, E. (1998). Collaborative testing of eddy structure identification methods in free turbulent shear flows. Experiments in Fluids, 25, 197–225.CrossRefGoogle Scholar
  8. Brooke, J. W., and Hanratty, T. J. (1993). Origin of turbulence-producing eddies in a channel flow. Physics of Fluids, 5, 1011–1022.CrossRefMATHGoogle Scholar
  9. Campbell, J. A., and Hanratty, T. J. (1983). Mechanisms of turbulent mass transfer at a solid boundary. AIChE Journal, 29, 221.CrossRefGoogle Scholar
  10. Choi, K.-S. (2001). Turbulent drag reduction mechanisms: strategies for turbulence management. In this book.Google Scholar
  11. Choi, K.-S., and Graham, M. (1998). Drag reduction of turbulent pipe flows by circular-wall oscillation. Physics of Fluids, 10, 7–9.CrossRefGoogle Scholar
  12. Choi, K.-S., and Clayton, B. R. (2001). The mechanism of turbulent drag reduction with wall oscillation. International Journal of Heat and Fluid Flow, 22, 1–9.CrossRefGoogle Scholar
  13. Chong, M. S., Perry, A., and Cantwell, B. J. (1990). A general classification of three-dimensional flow fields. Physics of Fluids A, 2, 765–777.CrossRefMathSciNetGoogle Scholar
  14. Coleman, G. N., Kim, J., and Le, A. T. (1996). A numerical study of three-dimensional bounded flows. International Journal of Heat and Fluid Flow, 17, 333–342.CrossRefGoogle Scholar
  15. Crawford, C. H., and Karniadakis, G. E. (1997). Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing. Physics of Fluids, 9, 788–804.CrossRefGoogle Scholar
  16. Davidson, J. H., and Shaughnessy, E. J. (1986). Turbulence generation by electric body forces. Experiments in Fluids, 4, 17–43.CrossRefGoogle Scholar
  17. Davidson, J. H., and McKinney, P. J. (1989). Turbulent mixing in a barbed plate-to-plate electrostatic precipitator. Atmospheric Environment, 23, 2093–2150.CrossRefGoogle Scholar
  18. Davidson, J. H., and McKinney, P. J. (1991). EHD flow visualization in the wire-plate and barbed plate electrostatic precipitator. IEEE Transactions Industrial Applications, 27, 154–180.CrossRefGoogle Scholar
  19. De Angelis, V., Lombardi, P., Andreussi, P., and Banerjee, S. (1997). Mycrophysics of scalar transfer at air-water interfaces. Invited Paper, IMA Conference on ind over Wave Couplings, Salford, UK, 8–10 April, 1997, Oxford University Press.Google Scholar
  20. Dinelli, G., and Rea, M. (1990). Pulse power electrostatic technologies for the control of flue gas emission. Journal of Electrostatics, 25, 23–40.CrossRefGoogle Scholar
  21. Dinelli, G., Civitano, L., and Rea, M. (1991). Industrial experiments on pulse corona simultaneous removal of NOx and 502 from flue gas. IEEE Transactions on Industry Applications, 26, 535–541.CrossRefGoogle Scholar
  22. Du, Y., and Kamiadakis, G. E. (2000). Suppressing wall turbulence by means of a transverse traveling wave. Science, 288, 1230–1234.CrossRefGoogle Scholar
  23. Dubief, Y., and Delcayre, F. (2000). On coherent-’vortex identification in turbulence. Journal of Turbulence, 1, 11–32. Retrieved at http://jot.iop.org.
  24. Fulgosi, M. (1998). Strategies to control turbulent boundary layers by large-scale EHD structures. MS Thesis, University of Udine (In Italian).Google Scholar
  25. Fulgosi, M., Banetjee, S., and Soldati, A. (1999). Turbulence modulation by an array of large-scale stream-wise structures of EHD origin. ASME Paper No. FEDSM99–6934, 3rd ASME/JSME Fluids Engineering Conference, San Francisco, CA, July, 18–22, 1999.Google Scholar
  26. Fulgosi, M., Marchioli, C., and Soldati, A. (2000). Turbulent drag reduction by streamwise EHD flows: a new configuration for electrostatic precipitators. Proceedings of the 2nd International Workshop on Electrical Conduction, Convection and Breakdown in Fluids, Grenoble (France), May, 5, 2000, 139–142.Google Scholar
  27. Harris, J. A., and Street, R. L. (1994). Numerical simulation of turbulent flow over a moving wavy boundary: Norris and Reynolds extended. Physics of Fluids, 6, 924–943.CrossRefMATHGoogle Scholar
  28. Hunt, J. C. R. (1995). Effects of body forces on turbulence. In Benzi, R., ed., Advances in Turbulence V. Kluwer, Dordrecht (NL), 229–250.Google Scholar
  29. Hunt, J. C. R., Wray, A. A., and Moin, P. (1998). Eddies, stream and covergence zones in turbulent flows. Center of Turbulence Research Rep., CTR-588, 193.Google Scholar
  30. Hussain, F. (1983). Coherent structures–reality and myth. Physics of Fluids, 26, 2816–2838.CrossRefMATHGoogle Scholar
  31. Jeong, J., and Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–83.CrossRefMATHMathSciNetGoogle Scholar
  32. Jeong, J., Hussain, F., Schoppa, W., and Kim, J. (1997). Coherent structures near the wall in a turbulent channel flow. Journal of Fluid Mechanics, 322, 185–202.Google Scholar
  33. Jimenez, J., and Moin, P. (1991). The minimal flow unit in near-wall turbulence. Journal of Fluid Mechanics, 225, 213–233.CrossRefMATHGoogle Scholar
  34. Jimenez, J., and Pinelli, A. (1999). The autonomous cycle of near-wall turbulence. Journal of Fluid Mechanics, 389, 335–359.CrossRefMATHMathSciNetGoogle Scholar
  35. Jung, W., Mangiavacchi, N., and Akhavan, R. (1992). Suppression of turbulence in wall-bounded flows by high frequency spanwise oscillations. Physics of Fluids A, 4, 1605–1607.CrossRefGoogle Scholar
  36. Kallio, G. A., and Stock, D. E. (1986). Computation of electrical conditions inside wire-duct electrostatic precipitators using a combined finite-element, finite-difference technique. Journal of Applied Physics, 59, 1799–1806.CrossRefGoogle Scholar
  37. Kallio, G. A., and Stock, D. E. (1992). Interaction of electrostatic and fluid dynamic fields in wire-plate electrostatic precipitators. Journal of Fluid Mechanics, 240, 133–153.CrossRefGoogle Scholar
  38. Kasagi, N., and lids, O. (1999). Progress in direct numerical simulation of turbulent heat transfer. Keynote Paper, 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, CD-ROM Publication, ASME, March, 1999.Google Scholar
  39. Kasagi, N., and Ohtsubo, Y. (1993). Direct numerical simulation of low Prandtl number thermal field in a turbulent channel flow. In Durst, E, Friedrich, R., Launder, B. E., Schmidt, E W., Schumann, U., and Whitelaw, J. H., eds., Proceedings of the 8th Symposium on Turbulent Shear Flows, Springer-Verlag, Berlin, 1993, 97–119.Google Scholar
  40. Kelly-Wintenberg, K., Montie, T. C., Brickman, C., Roth, J. R., Carr, A. K., Sorge, K., Wadsworth, L. C., and Tsai, P. P. Y. (1998). Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma. Journal of Industrial Microbiology and Biotechnology, 20, 69–74.CrossRefGoogle Scholar
  41. Kim, J., and Hussain, E (1987). Propagation velocity of perturbations in turbulent channel flow. Physics of Fluids A, 5, 695–706.Google Scholar
  42. Kim, J., Moin, P., and Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166.CrossRefMATHGoogle Scholar
  43. Kline, S. J., Reynolds, W. C., Schraub, E A., and Runstadler, P. W. (1967). The structure of turbulent boundary layer. Journal of Fluid Mechanics, 70, 741–773.CrossRefGoogle Scholar
  44. Kline, S. J., and Robinson, S. K. (1990). Quasi-coherent structures in the turbulent boundary layer:Part 1.Status report on community-wide survey of the data. In Kline, S. J., Afgan, N. H., eds., Near-Wall Turbulence. Hemisphere, New York.Google Scholar
  45. Lai, E C., McKinney, P. J., and Davidson, J. H. (1995). Oscillatory electrohydrodynamic gas flows. Journal of Fluids Engineering, 117, 491–500.CrossRefGoogle Scholar
  46. Lam, K., and Banerjee, S. (1992). On the condition of streak formation in bounded flows. Physics of Fluids A, 4, 306–320.MATHGoogle Scholar
  47. Leonard, G. L., Mitchner, M., and Self, S. A. (1983). An experimental study of the electrohydrodynamic flow in electrostatic precipitators. Journal of Fluid Mechanics, 127, 123–145.CrossRefGoogle Scholar
  48. Leutert, G., and Bohlen, B. (1972). The spatial trend of electric field strength and space charge density in plate type electrostatic precipitator. Staub Reinhalt Luft,32 27–34 (In English).Google Scholar
  49. Lombardi, P., De Angelis, V., and Banerjee, S. (1996). Direct numerical simulation of the near-interface turbulence in coupled gas-liquid flow. Physics of Fluids, 8, 1643–1665.CrossRefMATHGoogle Scholar
  50. Malik, M. R., Weinstein, L. M., and Hussaini, M. Y. (1983). Ion wind drag reduction. AIM 83–0231, 21th Aerospace Sciences Meeting, January 10–13, 1983, Reno (NV).Google Scholar
  51. Marchioli, C. (1999). Turbulent transfer mechanisms near the wall. MS Thesis, University of Udine (In Italian).Google Scholar
  52. Massines, E, Rabehi, A., Decomps, P., Gadri, R. B., Segur, P., and Mayoux, C. (1998). Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. Journal of Applied Physics, 83, 2950–2957.CrossRefGoogle Scholar
  53. Mc Daniel, E. W., and Mason, E. A. (1973). The mobility and diffusion of ions in gases. New York, NY, Wiley.Google Scholar
  54. Montie, T. C., Kelly-Wintenberg, K., and Roth, JR. (2000). An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Transactions on Plasma Science, 28, 41–50.CrossRefGoogle Scholar
  55. Ohadi, M. M., Nelson, D. A., and Zia, S. (1991). Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge. International Journal of Heat and Mass Transfer, 34, 1175–1187.CrossRefGoogle Scholar
  56. Owsenek, B. L., Seyed-Yagoobi, J., and Page, R. H. (1995). Experimental investigation of corona wind heat transfer enhancement with a heated horizontal flat plate. ASME Journal of Heat Transfer, 117, 309–315.CrossRefGoogle Scholar
  57. Owsenek,B. L., and Seyed-Yagoobi, J. (1997). Theoretical and experimental study of electrohydrodynamic heat transfer enhancement through wire-plate corona discharge. Journal of Heat Transfer,119 604–610.Google Scholar
  58. Pan, Y., and Banerjee, S. (1996). Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8, 2733–2755.CrossRefGoogle Scholar
  59. Papavassiliou, D. V., and Hanratty, T. J. (1995). The use of Lagrangian methods to describe turbulent transport of heat from a wall. Industrial and Engineering Chemistry Research, 34, 3359–3367.CrossRefGoogle Scholar
  60. Perry, A., and Chong, M. S. (1987). A description of eddying motions and flow patterns using critical point concepts. Annual Review of Fluid Mechanics, 9, 125–148.CrossRefGoogle Scholar
  61. Reynolds, W. C., and Hussain, F. (1972). The mechanics of an organized wave in turbulent shear flows. Part 3. Theoretical models and comparison with experiments. Journal of Fluid Mechanics, 54, 263–288.CrossRefGoogle Scholar
  62. Roth, J. R. Sherman, D. M., and Wilkinson, S. P. (1998). Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. AIM 98–0328, 36th Aerospace Sciences Meeting,January 12–15, 1998, Reno (NV).Google Scholar
  63. Roth, J. R. Sherman, D. M., and Wilkinson, S. P. (2000). Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA Journal,38 1166–1172.Google Scholar
  64. Schoppa, W., and Hussain, F. (1996). New aspects of vortex dynamics relevant to coherent structures in turbulent flows. In Bonnet, J. P., ed., Eddy Structure Identification, Springer-Verlag, Wien, 61–143.Google Scholar
  65. Schoppa, W., and Hussain, F. (1997). Genesis and dynamics of coherent structures in near-wall turbulence. In Panton, R., ed., Self-sustaining Mechanisms of Wall Turbulence, Computational Mechanics Publications, 385–422.Google Scholar
  66. Schoppa, W., and Hussain, F. (1998). A large-scale control strategy for drag reduction in turbulent boundary layers. Physics of Fluids, 10, 1049–1051.CrossRefMATHMathSciNetGoogle Scholar
  67. Schoppa, W., and Hussain, F. (2000). Coherent structure dynamics in near-wall turbulence. Fluid Dynamics Research, 26, 119–139.CrossRefMATHMathSciNetGoogle Scholar
  68. Soldati, A. (1998). Turbulence control and drag reduction by means of large-scale EHD structures. International Workshop on Electrical Conduction, Convection and Breakdown in Fluids, Seville (Spain), March 27–28, 1998, 119–124.Google Scholar
  69. Soldati, A. (2000). On the effects of electrohydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators. Journal of Aerosol Science, 31, 293–305.CrossRefGoogle Scholar
  70. Soldati, A. (2000). Modulation of turbulent boundary layer by EHD flows. ERCOFTAC Bulletin, 44, 50–56.Google Scholar
  71. Soldati, A. (2000). Modulation of turbulent channel flow by large-scale streamwise electrohydrodynamic vortical flows (Submitted for pubblication).Google Scholar
  72. Soldati, A., Andreussi, P., and Banerjee, S. (1993). Direct simulation of turbulent particle transport in electrostatic precipitators. AIChE Journal, 39, 1910–1920.CrossRefGoogle Scholar
  73. Soldati, A., and Banerjee, S. (1997). Drag reduction mechanisms in a turbulent Poiseuille flow with superimposed EHD structures. Bulletin of American Physics Society, 42, 2247–2254.Google Scholar
  74. Soldati, A., and Banerjee, S. (1998). Turbulence modification by large scale organized electrohydrodynamic flows. Physics of Fluids, 10, 1742–1756.CrossRefGoogle Scholar
  75. Velkoff, H. R., and Godfrey, R. (1979). Low-velocity heat transfer to a flat plate in the presence of a corona discharge in air. Journal of Heat Transfer, 101, 157–163.CrossRefGoogle Scholar
  76. Willmarth, W. W., and Lu, S. S. (1972). Structure of the Reynolds stress near the wall. Journal of Fluid Mechanics, 55, 65–92.CrossRefGoogle Scholar
  77. Yamamoto, T., and Velkoff, H. R. (1981). Electrohydrodynamics in an electrostatic precipitator. Journal of Fluid Mechanics, 9, 108–122.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Alfredo Soldati
    • 1
  • Cristian Marchioli
    • 1
  1. 1.Centro di Fluidodinamica e Idraulica and Dipartimento di Scienze e Tecnologie ChimicheUniversity of UdineUdineItaly

Personalised recommendations