Synthetic Eulerian Fields and Lagrangian Turbulence

  • G. Boffetta
  • A. Celani
  • A. Crisanti
  • A. Vulpiani
Part of the International Centre for Mechanical Sciences book series (CISM, volume 415)


The Lagrangian statistics of relative dispersion in fully developed turbulence is investigated. A scaling range, spanning many decades, is achieved by generating a synthetic velocity field with prescribed Eulerian statistical features. For velocity field obeying Kolmogorov similarity, the Lagrangian statistics is self similar, and in agreement with Richardson argument. In intermittent velocity fields the scaling laws for the Lagrangian statistics are found to depend on Eulerian intermittency. This can be explained in terms of a multi-fractal description. As a consequence of the Kolmogorov law the Richardson law for the variance of pair separation is not affected by intermittency corrections.


Velocity Field Velocity Difference Inertial Range Particle Pair Pair Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Monin, A., and Yaglom, A. (1975). Statistical Fluid Mechanics. Cambridge, MA: MIT Press.Google Scholar
  2. Frisch, U. (1995). Turbulence. Cambridge, UK: Cambridge University Press.MATHGoogle Scholar
  3. Richardson, L.F. (1926). Proc. R. Soc. A 110: 709.Google Scholar
  4. Zovari, N. and Bahiano, A. (1994). Physica D 76: 318.CrossRefGoogle Scholar
  5. Elliott, F.W. Jr. and Majda, A.J. (1996). Phys. Fluids 8: 1052.CrossRefMATHMathSciNetGoogle Scholar
  6. Fung, J.C.H. and Vassilicos, J.C. (1998). Phys. Rev. E 57: 1677.Google Scholar
  7. Orszag, S.A. (1970). Phys. Fluids 13: 2203.CrossRefMathSciNetGoogle Scholar
  8. Benzi, R., Biferale, L., Crisanti, A., Paladin, G., Vergassola, M. and Vulpiani, A. (1993). Physica D 65: 352.CrossRefMATHGoogle Scholar
  9. L’vov, V.S., Podivilov, E. and Procaccia, I. (1997). Phys. Rev. E 55: 7030.CrossRefMathSciNetGoogle Scholar
  10. Biferale, L., Boffetta, G., Celani, A., Crisanti, A. and Vulpiani, A. (1998). Phys. Rev. E 57: R6261.CrossRefGoogle Scholar
  11. Anselmet, F., Gagne, Y., Hopfinger, E.J., and Antonia, R.A. (1984). J. Fluid Mech. 140: 63.CrossRefGoogle Scholar
  12. Fung, J.C.H., Hunt, J.C.R, Malik, N.A. and Perkins, R.J. (1992). J. Fluid Mech. 236: 281.CrossRefMATHMathSciNetGoogle Scholar
  13. Artale, A., Boffetta, G., Celani, A., Cencini, M. and Vulpiani, A. (1997). Phys. Fluids 9: 3162.CrossRefMATHMathSciNetGoogle Scholar
  14. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G. and Vulpiani, A. (1996). Phys. Rev. Lett. 77: 1262. (1997).Google Scholar
  15. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G. and Vulpiani, A. (1996). J. Phys. A 30: 1.Google Scholar
  16. Novikov, E.A. (1989). Phys. Fluids A 1:326.Google Scholar
  17. Crisanti, A., Paladin, G. and Vulpiani, A. (1987). Phys. Lett. A 126: 120.CrossRefMathSciNetGoogle Scholar
  18. Grossmann, S. and Procaccia, I. (1984). Phys. Rev. A 29: 1358.Google Scholar
  19. Shlesinger, M.F., West, B.J. and Klafter, J. (1987). Phys. Rev. Lett. 58: 1100CrossRefMathSciNetGoogle Scholar
  20. Bohr, T., Jensen, M., Paladin, G. and Vulpiani, A. (1998). Dynamical Systems Approach to Turbulence. Cambridge, UK: Cambridge University Press.CrossRefMATHGoogle Scholar
  21. Paladin, G. and Vulpiani, A. (1987). Phys. Rep. 156: 147.CrossRefMathSciNetGoogle Scholar
  22. Vicsek, T. and Barabâsi, A.L. (1991). J. Phys. A 24: L485.Google Scholar
  23. Barabâsi, A.L., Szépfalusy, P. and Vicsek, T. (1991). PhysicaA 178: 17.Google Scholar
  24. Eggers, J. and Grossmann, S. (1992). Phys. Rev. A 45: 2360.Google Scholar
  25. Juneja, A., Lathrop, D.P., Sreenivasan, K.R. and Stolovitzky, G. (1994). Phys. Rev. E 49: 5179.CrossRefMathSciNetGoogle Scholar
  26. Taylor, G.I. (1938). Proc. R. Soc. Lond. A 164: 476.Google Scholar
  27. Kolmogorov, A.N. (1962). J. Fluid Mech 13: 82.CrossRefMATHMathSciNetGoogle Scholar
  28. Rose, H.A. and Sulem, P.L. (1978). J. Physique 5: 441.CrossRefMathSciNetGoogle Scholar
  29. Feller, W. (1971). An introduction to probability theory and its applications. J. Wiley Sons.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • G. Boffetta
    • 1
  • A. Celani
    • 2
  • A. Crisanti
    • 3
  • A. Vulpiani
    • 3
  1. 1.Dipartimento di Fisica Generale and INFM Università di TorinoTorinoItaly
  2. 2.Observatoire de la Côte d’AzurCNRSNice Cedex 4France
  3. 3.Dipartimento di Fisica and INFMUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations