Advertisement

Drag reduction by additives: a review

  • F. T. M. Nieuwstadt
  • J. M. J. den Toonder
Part of the International Centre for Mechanical Sciences book series (CISM, volume 415)

Abstract

A review is given of the effect of drag-reduction by additives in turbulent flow. In this review we discuss both the experimental results and the relevant theoretical developments.

Keywords

Reynolds Stress Newtonian Fluid Pipe Flow Viscous Sublayer Elongational Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achia B.U. and Thompson, D.W. (1977). Structure of the turbulent boundary in drag-reducing pipe flow. J. Fluid Mech. Vol. 81, pp. 439–464.Google Scholar
  2. Barnes, H.A., Hutton, J.F. Sc Walters, K. (1989). An Introduction to Rheology. Elsevier.Google Scholar
  3. Batchelor, G.K. (1967). An introduction to fluid dynamics. Cambridge University Press.Google Scholar
  4. Berman, N.S. (1978). Drag reduction by polymers. Ann. Rev. Fluid Mech. Vol. 10, pp. 47–64.CrossRefGoogle Scholar
  5. Berman, N.S. (1985). A qualitative understanding of drag reduction by polymers. In The Influence of Polymer Additives on Velocity and Temperature Fields (IUTAM Symp. 1984), ed. Gampert, B., Springer-Verlag, pp. 293–310.Google Scholar
  6. Berman, N.S. (1989). Polymer contributions to transport equations. In Drag reduction in fluid flows, eds. Sellin, R.H.J. and Moses, R.T., Ellis Horwood publ., pp. 21–26.Google Scholar
  7. Berman, N.S. and George, W.K., Jr. (1974). Onset of drag reduction in dilute polymer solutions Phys. Fluids Vol. 17, pp. 250–251.CrossRefGoogle Scholar
  8. Bewersdorff, H.-W. (1989). Elongational effects in heterogeneous drag reduction. In Drag reduction in fluid flows, eds. Sellin, R.H.J. Si Moses, R.T., Ellis Horwood publ., pp. 279–286.Google Scholar
  9. Bewersdorff, H.-W. (1990). Drag Reduction in Surfactant Solutions. In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer-Verlag, pp. 293–312.Google Scholar
  10. Bewersdorff, H.-W. (1991). Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes. Presented at the 6th European Drag Reduction Working Meeting, Eindhoven.Google Scholar
  11. Bewersdorff, 11.-W. and Berman, N.S. (1987). Effect of roughness on drag reduction for commercially smooth pipes. J. Non-Newt. Fluid Mech., Vol. 24, pp. 365–370.CrossRefGoogle Scholar
  12. Bewersdorff, 11.-W. and Berman, N.S. (1988). The influence of flow-induced non-Newtonian fluid properties on turbulent drag reduction. Rheol. Acta Vol. 27, pp. 130–136.CrossRefGoogle Scholar
  13. Bird, R.B., Curtiss, C.F., Armstrong, R.C. and Hassager, O. (1987). Dynamics of Polymeric Liquids, Vol 2, Kinetic Theory. John Wiley.Google Scholar
  14. Blackwelder, R.F. and Eckelmann, H. (1979). Vortices associated with the bursting phenomenon. J. Fluid Mech. Vol. 94, pp. 577–594.CrossRefGoogle Scholar
  15. Chung, J.S. and Graebel, W.P. (1972). Laser Anemometer Measurements of Turbulence in Non-Newtonian Pipe Flows. Phys. Fluids Vol. 15, pp. 546–554.CrossRefGoogle Scholar
  16. Darby, R. and Chang, H.-F. D. (1984). Generalized Correlation for Friction Loss in Drag Reducing Polymer Solutions. AIChE Journal Vol. 30, pp. 274–280.CrossRefGoogle Scholar
  17. Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich R. and Nieuwstadt F.T.M. (1994). Fully developed pipe flow: a comparison between direct numerical simulation and experiment J. Fluid Mech. 268, pp. 175–209CrossRefGoogle Scholar
  18. Elperin, I.T., Smolskii, B.M. and Leventhal, L.I. (1967). Decreasing the hydrodynamic resistance of pipelines. Int. Chem. Eng. Vol. 7, pp. 276–295.Google Scholar
  19. Granville, P.S. (1984). A method for predicting additive drag reduction from small-diameter pipe flows. In Proc. 3rd Int. Conf. on Drag Reduction,Bristol.Google Scholar
  20. Gyr, A. and Bewersdorff, H.-W. (1990). Change of Structures Close to the Wall of a Turbulent Flow in Drag Reducing Fluids. In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer Verlag, pp. 215–222.Google Scholar
  21. Harder, K.J. and Tiederman, W.G. (1991). Drag reduction and turbulent structure in two-dimensional channel flows. Phil. Trans. R. Soc. Lond. A Vol 336, pp. 19–34.CrossRefMATHGoogle Scholar
  22. Hinze, J.O. (1975) Turbulence,2nd. ed. McGraw-Hill.Google Scholar
  23. Hoyt, J.W. (1990). Drag Reduction by Polymers and Surfactants. In Viscous Drag Reduction in Boundary Layers, eds. Bushnell D.M. and Hefner, J.N., AIAA Inc., pp. 413–432.Google Scholar
  24. Hoyt, J.W. and Sellin, R.H.J. (1991). Polymer ‘threads’ and drag reduction. Rheol. Acta Vol. 30, pp. 307–315.CrossRefGoogle Scholar
  25. Hoyt, J.W. Si Sellin, R.H.J. (1991a). Interaction of viscoelastic threads with turbulence eddies. In FED-Vol.112, Forum on Turbulent Flows, eds. Morris, M.J., Samimy, S., Kiya, M. and Masuda, S., ASME, pp. 165–170.Google Scholar
  26. Hussain, A.K.M.F. (1983). Coherent Structures–Reality and Myth. Phys. Fluids Vol. 26, pp. 2816–2850.CrossRefMATHGoogle Scholar
  27. Joseph, D.D. (1990). Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag.Google Scholar
  28. Joseph, D.D., Narain, A., Riccius, O. and Arney, M. (1986). Shear-wave speeds and elastic moduli for different liquids. Theory and experiments. J. Fluid Mech. Vol. 171, pp. 289–338.CrossRefMATHGoogle Scholar
  29. Kale, D.D. Sc Metzner, A.B. (1976). Turbulent Drag Reduction in Dilute Fiber Suspensions: Mechanistic Considerations. AIChE Journal Vol. 22, pp. 669–674.Google Scholar
  30. Kline, S.J., Reynolds, W.C., Schraub, F.A. and Rundstadler, P.W. (1967). The structure of turbulent boundary layers. J. Fluid Mech. Vol. 30, pp. 741–773.CrossRefGoogle Scholar
  31. Landahl, M.T. (1973). Drag reduction by polymer addition. In Theoretical and Applied Mechanics, proc. 13th int. congr. theor. and appl. mech, Moscow 1972, eds. Becker, E. and Mikhailov, G.K., Springer-Verlag, pp. 177–199.Google Scholar
  32. Laufer, J. (1954). The Structure of Turbulence in Fully Developed Pipe Flow, NACA Report No. 1174.Google Scholar
  33. Leal, L.G. (1990). Dynamics of Dilute Polymer Solutions. In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer Verlag, pp. 155–185.Google Scholar
  34. Logan, S.E. (1972). Laser Velocimeter Measurement of Reynolds Stress and Turbulence in Dilute Polymer Solutions. AIAA Journal Vol. 10, pp. 962–964.CrossRefGoogle Scholar
  35. Luchik, T.S. and Tiederman, W.G. (1988). Turbulent structure in low-concentration drag-reducing channel flows. J. Fluid Mech. Vol. 190, pp. 241–263.CrossRefGoogle Scholar
  36. Lumley, J.L. (1969). Drag reduction by additives. Ann. Rev. Fluid Mech. Vol. 1, pp. 367–384.CrossRefGoogle Scholar
  37. Lumley J.L. (1973). Drag Reduction in Turbulent Flow by Polymer Additives. Macromol. Rev. Vol. 7, pp. 263–290.CrossRefGoogle Scholar
  38. Lumley, J.L. (1977). Drag reduction in two phase and polymer flows. Phys. Fluids Vol. 20, pp. S64 - S71.CrossRefGoogle Scholar
  39. Lumley, J.L. and Kubo, I. (1985). Turbulent drag reduction by polymer additives: a survey. In The Influence of Polymer Additives on Velocity and Temperature Fields (IUTAM Symp. 1984), ed. Gampert, B., Springer-Verlag, pp. 3–21.Google Scholar
  40. Matthys, E.F. (1991). Heat transfer, drag reduction, and fluid characterization for turbulent flow of polymer solutions: recent results and research needs. J. Non-Newt. Fluid Mech. Vol. 38, pp. 313–342.CrossRefGoogle Scholar
  41. McComb, W.D. and Rabie, L.H. (1982) Local Drag Reduction Due to Injection of Polymer Solutions into Turbulent Flow in a Pipe. AIChE J. Vol. 28, pp. 547–565.CrossRefGoogle Scholar
  42. Metzner, A.B. and Metzner, A.P. (1970). Stress levels in rapid extensional flows of polymeric liquids. Rheologica Acta Vol. 9, pp. 174–181.CrossRefGoogle Scholar
  43. Mizushina, T. and Usui, H. (1977). Reduction of eddy diffusion for momentum and heat in viscoelastic flow in a circular tube. Phys. Fluids Vol. 20, pp. S100 - S108.CrossRefGoogle Scholar
  44. Morgan, S.E. and McCormick, C.L. (1990). Water-soluble copolymers XXXII: Macromolecular drag reduction. A review of predictive theories and the effects of polymer structure. Prog. Polym. Sci. Vol. 15, pp. 507–549.CrossRefGoogle Scholar
  45. Mysels, K.J. (1949). Flow of thickened fluids“, U.S. Patent 249 21 73, Dec. 27.Google Scholar
  46. Oldroyd, J.G. (1948). A suggested method of detecting wall-effects in turbulent flow through tubes. In Proc. 1st Intern. Congr. Rheol., North Holland, pp. II130–34.Google Scholar
  47. Orlandi P. (1995). A tentative approach to the direct simulation of drag reduction by polymers. J. Non Newt. Fluid Mech., 60, pp 277–301.CrossRefGoogle Scholar
  48. Paterson R.W, Sc Abernathy F.H. (1970). Turbulent flow drag reduction and degradation with dilute polymer solutions. J. Fluid Mech. Vol. 43, pp. 689–710.CrossRefGoogle Scholar
  49. Pollert, J. and Sellin, R.H.J. (1989). Mechanical degradation of drag reducing polymer and surfactant additives: a review. In Drag reduction in fluid flows, eds. Sellin, R.H.J. and Moses, R.T., Ellis Horwood publ., pp. 179–188.Google Scholar
  50. Ptasinski, P.K., Nieuwstadt, F.T.M., Brule, B.H.A.A. van der and Hulsen, M.H. (2000). Experiments in turbulent pipe flow with polymer additives at maximum drag reduction Submitted for publication.Google Scholar
  51. Rao, K.N., Narashimha, R. and Badri Narayanan, M.A. (1971). The ‘bursting’ phenomenon in a turbulent boundary layer. J. Fluid Mech. Vol. 48, pp. 339–352.CrossRefGoogle Scholar
  52. Rudd, M.J. (1972). Velocity measurements made with a laser dopplermeter on the turbulent pipe flow of a dilute polymer solution. J. Fluid Mech. Vol. 51, pp. 673–685.CrossRefGoogle Scholar
  53. Ryskin, G. (1987) Turbulent Drag Reduction by Polymers: A Quantitative Theory. Phys. Rev. Letters Vol. 59, pp. 2059–2062.CrossRefGoogle Scholar
  54. Schichting, H. (1968) Boundary-Layer Theory Mc-Graw Hill, New York.Google Scholar
  55. Schmidtt, K., Durst, F. and Brunn, P.O. (1991). Druckverlustminderungen in Strömungen durch hochpolymere Additive: Klärung einiger noch offener Fragen. Arch. Appl. Mech. Vol 61, pp. 119–132.Google Scholar
  56. Sellin, R.H.J., Hoyt, J.W. and Scrivener, O. (1982). The effect of drag-reducing additives on fluid flows and their industrial applications Part 1: Basic aspects. J. Hydr. Res. Vol. 20, pp. 29–68.CrossRefGoogle Scholar
  57. Sureshkumar, R., Beris, A.N. and Handler. R.A. (1997). Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids, 9, pp. 743–755.CrossRefGoogle Scholar
  58. Tennekes, H. and Lumley, J.L. (1972). A First Course in Turbulence. MIT Press.Google Scholar
  59. Thiel, H. (1990). Widerstandsverminderung bei turbulenten Strömungen in künstlich rauhen Rohren,Ph-D thesis Universität Dordtmundt.Google Scholar
  60. Tiederman, W.G. (1990). The Effect of Dilute Polymer Solutions on Viscous Drag and Turbulence Structure In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer Verlag, pp. 187–200.Google Scholar
  61. Tiederman, W.G., Luchik, T.S. and Bogard, D.G. (1985). Wall-layer structure and drag reduction. J. Fluid Mech. Vol. 156, pp. 419–437.CrossRefGoogle Scholar
  62. Toms, B.A. (1948). Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proc. 1st Intern. Congr. Rheol.,North Holland, pp. II135–41.Google Scholar
  63. Toms, B.A. (1977). On the early experiments on drag reduction by polymers. Phys. Fluids Vol. 20, pp. S3 - S5.CrossRefGoogle Scholar
  64. Toonder, J.M.J. den and Nieuwstadt, F.T.M. (1998). Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys. Fluids Vol. 9, pp 3398–3409.Google Scholar
  65. Toonder, J.M.J. den, Hulsen, M.A., Kuiken, G.D.C. and Nieuwstadt, F.T.M. (1997). Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J. Fluid Mech. Vol. 337, pp 193–232.CrossRefGoogle Scholar
  66. Truesdell, C. and Noll, W. (1965). The Non-linear Field Theories of Mechanics. In Handbuch der Physik 111/3,ed. Flügge, S., Springer-Verlag.Google Scholar
  67. Virk, P.S. (1970). Drag reduction in rough pipes. J. Fluid Mech. Vol. 45, pp. 225–246.CrossRefGoogle Scholar
  68. Virk, P.S. (1975a). Turbulent kinetic energy profile during drag reduction. Phys. Fluids Vol. 18, pp. 415–419.CrossRefGoogle Scholar
  69. Virk, P.S. (1975). Drag Reduction Fundamentals. AIChE Journal Vol. 21, pp. 625–656.CrossRefGoogle Scholar
  70. Virk, P.S., Merrill, E.W., Mickley, H.S. Smith, K.A. and Mollo-Christensen, E.L. (1967) The Toms-Phenomenon - Turbulent Pipe Flow of Dilute Polymer Solutions. J. Fluid Mech. Vol. 30, pp. 305.Google Scholar
  71. Virk, P.S. and Wagger, D.L. (1990). Aspects of Mechanisms in Type B Drag Reduction. In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer Verlag, pp. 201–213.Google Scholar
  72. Vissmann, K. and Bewersdorff, H.-W. (1989). The influence of pre-shearing on the elongational behaviour of drag reducing fluids. In Drag reduction in fluid flows, eds. Sellin, R.H.J. and Moses, R.T., Ellis Horwood publ., pp. 61–67.Google Scholar
  73. Vleggaar, J. and Tels, M. (1973). Drag reduction by polymer threads. Chem. Eng. Sc. Vol. 28, pp. 965–968.CrossRefGoogle Scholar
  74. Walker, D.T. and Tiederman, W.G. (1990). Turbulent structure in a channel flow with polymer injection at the wall. J. Fluid Mech. Vol. 218, pp. 377–403.CrossRefGoogle Scholar
  75. Warholic, M.D., Schmidt, G.M. and Hanratty, T.J. (1999). The influence of a drag reducing surfactant on a turbulent velocity field. J. Fluid Mech. Vol. 388, pp. 1–20.Google Scholar
  76. Warholic, M.D., Massah H. and Hanratty, T.J. (1999a). Influence of drag-reducing polymers on.turbulence effects of Reynolds number concentration and mixing. Exp. Fluids Vol. 27, pp. 461–472.CrossRefGoogle Scholar
  77. Willmarth,W.W., Wei, T. and Lee, C.O. (1987). Laser anemometer measurements of Reynolds stress in a turbulent channel flow with drag reducing polymer additives. Phys. Fluids Vol. 30, pp. 933–935.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • F. T. M. Nieuwstadt
    • 1
  • J. M. J. den Toonder
    • 2
  1. 1.J.M. Burgers CentreDelft University of TechnologyDelftthe Netherlands
  2. 2.Philips Research LaboratoriesEindhoventhe Netherlands

Personalised recommendations