Skip to main content

Drag reduction by additives: a review

  • Chapter
Turbulence Structure and Modulation

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 415))

Abstract

A review is given of the effect of drag-reduction by additives in turbulent flow. In this review we discuss both the experimental results and the relevant theoretical developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achia B.U. and Thompson, D.W. (1977). Structure of the turbulent boundary in drag-reducing pipe flow. J. Fluid Mech. Vol. 81, pp. 439–464.

    Google Scholar 

  • Barnes, H.A., Hutton, J.F. Sc Walters, K. (1989). An Introduction to Rheology. Elsevier.

    Google Scholar 

  • Batchelor, G.K. (1967). An introduction to fluid dynamics. Cambridge University Press.

    Google Scholar 

  • Berman, N.S. (1978). Drag reduction by polymers. Ann. Rev. Fluid Mech. Vol. 10, pp. 47–64.

    Article  Google Scholar 

  • Berman, N.S. (1985). A qualitative understanding of drag reduction by polymers. In The Influence of Polymer Additives on Velocity and Temperature Fields (IUTAM Symp. 1984), ed. Gampert, B., Springer-Verlag, pp. 293–310.

    Google Scholar 

  • Berman, N.S. (1989). Polymer contributions to transport equations. In Drag reduction in fluid flows, eds. Sellin, R.H.J. and Moses, R.T., Ellis Horwood publ., pp. 21–26.

    Google Scholar 

  • Berman, N.S. and George, W.K., Jr. (1974). Onset of drag reduction in dilute polymer solutions Phys. Fluids Vol. 17, pp. 250–251.

    Article  Google Scholar 

  • Bewersdorff, H.-W. (1989). Elongational effects in heterogeneous drag reduction. In Drag reduction in fluid flows, eds. Sellin, R.H.J. Si Moses, R.T., Ellis Horwood publ., pp. 279–286.

    Google Scholar 

  • Bewersdorff, H.-W. (1990). Drag Reduction in Surfactant Solutions. In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer-Verlag, pp. 293–312.

    Google Scholar 

  • Bewersdorff, H.-W. (1991). Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes. Presented at the 6th European Drag Reduction Working Meeting, Eindhoven.

    Google Scholar 

  • Bewersdorff, 11.-W. and Berman, N.S. (1987). Effect of roughness on drag reduction for commercially smooth pipes. J. Non-Newt. Fluid Mech., Vol. 24, pp. 365–370.

    Article  Google Scholar 

  • Bewersdorff, 11.-W. and Berman, N.S. (1988). The influence of flow-induced non-Newtonian fluid properties on turbulent drag reduction. Rheol. Acta Vol. 27, pp. 130–136.

    Article  Google Scholar 

  • Bird, R.B., Curtiss, C.F., Armstrong, R.C. and Hassager, O. (1987). Dynamics of Polymeric Liquids, Vol 2, Kinetic Theory. John Wiley.

    Google Scholar 

  • Blackwelder, R.F. and Eckelmann, H. (1979). Vortices associated with the bursting phenomenon. J. Fluid Mech. Vol. 94, pp. 577–594.

    Article  Google Scholar 

  • Chung, J.S. and Graebel, W.P. (1972). Laser Anemometer Measurements of Turbulence in Non-Newtonian Pipe Flows. Phys. Fluids Vol. 15, pp. 546–554.

    Article  Google Scholar 

  • Darby, R. and Chang, H.-F. D. (1984). Generalized Correlation for Friction Loss in Drag Reducing Polymer Solutions. AIChE Journal Vol. 30, pp. 274–280.

    Article  Google Scholar 

  • Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich R. and Nieuwstadt F.T.M. (1994). Fully developed pipe flow: a comparison between direct numerical simulation and experiment J. Fluid Mech. 268, pp. 175–209

    Article  Google Scholar 

  • Elperin, I.T., Smolskii, B.M. and Leventhal, L.I. (1967). Decreasing the hydrodynamic resistance of pipelines. Int. Chem. Eng. Vol. 7, pp. 276–295.

    Google Scholar 

  • Granville, P.S. (1984). A method for predicting additive drag reduction from small-diameter pipe flows. In Proc. 3rd Int. Conf. on Drag Reduction,Bristol.

    Google Scholar 

  • Gyr, A. and Bewersdorff, H.-W. (1990). Change of Structures Close to the Wall of a Turbulent Flow in Drag Reducing Fluids. In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer Verlag, pp. 215–222.

    Google Scholar 

  • Harder, K.J. and Tiederman, W.G. (1991). Drag reduction and turbulent structure in two-dimensional channel flows. Phil. Trans. R. Soc. Lond. A Vol 336, pp. 19–34.

    Article  MATH  Google Scholar 

  • Hinze, J.O. (1975) Turbulence,2nd. ed. McGraw-Hill.

    Google Scholar 

  • Hoyt, J.W. (1990). Drag Reduction by Polymers and Surfactants. In Viscous Drag Reduction in Boundary Layers, eds. Bushnell D.M. and Hefner, J.N., AIAA Inc., pp. 413–432.

    Google Scholar 

  • Hoyt, J.W. and Sellin, R.H.J. (1991). Polymer ‘threads’ and drag reduction. Rheol. Acta Vol. 30, pp. 307–315.

    Article  Google Scholar 

  • Hoyt, J.W. Si Sellin, R.H.J. (1991a). Interaction of viscoelastic threads with turbulence eddies. In FED-Vol.112, Forum on Turbulent Flows, eds. Morris, M.J., Samimy, S., Kiya, M. and Masuda, S., ASME, pp. 165–170.

    Google Scholar 

  • Hussain, A.K.M.F. (1983). Coherent Structures–Reality and Myth. Phys. Fluids Vol. 26, pp. 2816–2850.

    Article  MATH  Google Scholar 

  • Joseph, D.D. (1990). Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag.

    Google Scholar 

  • Joseph, D.D., Narain, A., Riccius, O. and Arney, M. (1986). Shear-wave speeds and elastic moduli for different liquids. Theory and experiments. J. Fluid Mech. Vol. 171, pp. 289–338.

    Article  MATH  Google Scholar 

  • Kale, D.D. Sc Metzner, A.B. (1976). Turbulent Drag Reduction in Dilute Fiber Suspensions: Mechanistic Considerations. AIChE Journal Vol. 22, pp. 669–674.

    Google Scholar 

  • Kline, S.J., Reynolds, W.C., Schraub, F.A. and Rundstadler, P.W. (1967). The structure of turbulent boundary layers. J. Fluid Mech. Vol. 30, pp. 741–773.

    Article  Google Scholar 

  • Landahl, M.T. (1973). Drag reduction by polymer addition. In Theoretical and Applied Mechanics, proc. 13th int. congr. theor. and appl. mech, Moscow 1972, eds. Becker, E. and Mikhailov, G.K., Springer-Verlag, pp. 177–199.

    Google Scholar 

  • Laufer, J. (1954). The Structure of Turbulence in Fully Developed Pipe Flow, NACA Report No. 1174.

    Google Scholar 

  • Leal, L.G. (1990). Dynamics of Dilute Polymer Solutions. In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer Verlag, pp. 155–185.

    Google Scholar 

  • Logan, S.E. (1972). Laser Velocimeter Measurement of Reynolds Stress and Turbulence in Dilute Polymer Solutions. AIAA Journal Vol. 10, pp. 962–964.

    Article  Google Scholar 

  • Luchik, T.S. and Tiederman, W.G. (1988). Turbulent structure in low-concentration drag-reducing channel flows. J. Fluid Mech. Vol. 190, pp. 241–263.

    Article  Google Scholar 

  • Lumley, J.L. (1969). Drag reduction by additives. Ann. Rev. Fluid Mech. Vol. 1, pp. 367–384.

    Article  Google Scholar 

  • Lumley J.L. (1973). Drag Reduction in Turbulent Flow by Polymer Additives. Macromol. Rev. Vol. 7, pp. 263–290.

    Article  Google Scholar 

  • Lumley, J.L. (1977). Drag reduction in two phase and polymer flows. Phys. Fluids Vol. 20, pp. S64 - S71.

    Article  Google Scholar 

  • Lumley, J.L. and Kubo, I. (1985). Turbulent drag reduction by polymer additives: a survey. In The Influence of Polymer Additives on Velocity and Temperature Fields (IUTAM Symp. 1984), ed. Gampert, B., Springer-Verlag, pp. 3–21.

    Google Scholar 

  • Matthys, E.F. (1991). Heat transfer, drag reduction, and fluid characterization for turbulent flow of polymer solutions: recent results and research needs. J. Non-Newt. Fluid Mech. Vol. 38, pp. 313–342.

    Article  Google Scholar 

  • McComb, W.D. and Rabie, L.H. (1982) Local Drag Reduction Due to Injection of Polymer Solutions into Turbulent Flow in a Pipe. AIChE J. Vol. 28, pp. 547–565.

    Article  Google Scholar 

  • Metzner, A.B. and Metzner, A.P. (1970). Stress levels in rapid extensional flows of polymeric liquids. Rheologica Acta Vol. 9, pp. 174–181.

    Article  Google Scholar 

  • Mizushina, T. and Usui, H. (1977). Reduction of eddy diffusion for momentum and heat in viscoelastic flow in a circular tube. Phys. Fluids Vol. 20, pp. S100 - S108.

    Article  Google Scholar 

  • Morgan, S.E. and McCormick, C.L. (1990). Water-soluble copolymers XXXII: Macromolecular drag reduction. A review of predictive theories and the effects of polymer structure. Prog. Polym. Sci. Vol. 15, pp. 507–549.

    Article  Google Scholar 

  • Mysels, K.J. (1949). Flow of thickened fluids“, U.S. Patent 249 21 73, Dec. 27.

    Google Scholar 

  • Oldroyd, J.G. (1948). A suggested method of detecting wall-effects in turbulent flow through tubes. In Proc. 1st Intern. Congr. Rheol., North Holland, pp. II130–34.

    Google Scholar 

  • Orlandi P. (1995). A tentative approach to the direct simulation of drag reduction by polymers. J. Non Newt. Fluid Mech., 60, pp 277–301.

    Article  Google Scholar 

  • Paterson R.W, Sc Abernathy F.H. (1970). Turbulent flow drag reduction and degradation with dilute polymer solutions. J. Fluid Mech. Vol. 43, pp. 689–710.

    Article  Google Scholar 

  • Pollert, J. and Sellin, R.H.J. (1989). Mechanical degradation of drag reducing polymer and surfactant additives: a review. In Drag reduction in fluid flows, eds. Sellin, R.H.J. and Moses, R.T., Ellis Horwood publ., pp. 179–188.

    Google Scholar 

  • Ptasinski, P.K., Nieuwstadt, F.T.M., Brule, B.H.A.A. van der and Hulsen, M.H. (2000). Experiments in turbulent pipe flow with polymer additives at maximum drag reduction Submitted for publication.

    Google Scholar 

  • Rao, K.N., Narashimha, R. and Badri Narayanan, M.A. (1971). The ‘bursting’ phenomenon in a turbulent boundary layer. J. Fluid Mech. Vol. 48, pp. 339–352.

    Article  Google Scholar 

  • Rudd, M.J. (1972). Velocity measurements made with a laser dopplermeter on the turbulent pipe flow of a dilute polymer solution. J. Fluid Mech. Vol. 51, pp. 673–685.

    Article  Google Scholar 

  • Ryskin, G. (1987) Turbulent Drag Reduction by Polymers: A Quantitative Theory. Phys. Rev. Letters Vol. 59, pp. 2059–2062.

    Article  Google Scholar 

  • Schichting, H. (1968) Boundary-Layer Theory Mc-Graw Hill, New York.

    Google Scholar 

  • Schmidtt, K., Durst, F. and Brunn, P.O. (1991). Druckverlustminderungen in Strömungen durch hochpolymere Additive: Klärung einiger noch offener Fragen. Arch. Appl. Mech. Vol 61, pp. 119–132.

    Google Scholar 

  • Sellin, R.H.J., Hoyt, J.W. and Scrivener, O. (1982). The effect of drag-reducing additives on fluid flows and their industrial applications Part 1: Basic aspects. J. Hydr. Res. Vol. 20, pp. 29–68.

    Article  Google Scholar 

  • Sureshkumar, R., Beris, A.N. and Handler. R.A. (1997). Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids, 9, pp. 743–755.

    Article  Google Scholar 

  • Tennekes, H. and Lumley, J.L. (1972). A First Course in Turbulence. MIT Press.

    Google Scholar 

  • Thiel, H. (1990). Widerstandsverminderung bei turbulenten Strömungen in künstlich rauhen Rohren,Ph-D thesis Universität Dordtmundt.

    Google Scholar 

  • Tiederman, W.G. (1990). The Effect of Dilute Polymer Solutions on Viscous Drag and Turbulence Structure In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer Verlag, pp. 187–200.

    Google Scholar 

  • Tiederman, W.G., Luchik, T.S. and Bogard, D.G. (1985). Wall-layer structure and drag reduction. J. Fluid Mech. Vol. 156, pp. 419–437.

    Article  Google Scholar 

  • Toms, B.A. (1948). Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proc. 1st Intern. Congr. Rheol.,North Holland, pp. II135–41.

    Google Scholar 

  • Toms, B.A. (1977). On the early experiments on drag reduction by polymers. Phys. Fluids Vol. 20, pp. S3 - S5.

    Article  Google Scholar 

  • Toonder, J.M.J. den and Nieuwstadt, F.T.M. (1998). Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys. Fluids Vol. 9, pp 3398–3409.

    Google Scholar 

  • Toonder, J.M.J. den, Hulsen, M.A., Kuiken, G.D.C. and Nieuwstadt, F.T.M. (1997). Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J. Fluid Mech. Vol. 337, pp 193–232.

    Article  Google Scholar 

  • Truesdell, C. and Noll, W. (1965). The Non-linear Field Theories of Mechanics. In Handbuch der Physik 111/3,ed. Flügge, S., Springer-Verlag.

    Google Scholar 

  • Virk, P.S. (1970). Drag reduction in rough pipes. J. Fluid Mech. Vol. 45, pp. 225–246.

    Article  Google Scholar 

  • Virk, P.S. (1975a). Turbulent kinetic energy profile during drag reduction. Phys. Fluids Vol. 18, pp. 415–419.

    Article  Google Scholar 

  • Virk, P.S. (1975). Drag Reduction Fundamentals. AIChE Journal Vol. 21, pp. 625–656.

    Article  Google Scholar 

  • Virk, P.S., Merrill, E.W., Mickley, H.S. Smith, K.A. and Mollo-Christensen, E.L. (1967) The Toms-Phenomenon - Turbulent Pipe Flow of Dilute Polymer Solutions. J. Fluid Mech. Vol. 30, pp. 305.

    Google Scholar 

  • Virk, P.S. and Wagger, D.L. (1990). Aspects of Mechanisms in Type B Drag Reduction. In Structure of turbulence and Drag Reduction (IUTAM Symp. 1989), ed. Gyr, A., Springer Verlag, pp. 201–213.

    Google Scholar 

  • Vissmann, K. and Bewersdorff, H.-W. (1989). The influence of pre-shearing on the elongational behaviour of drag reducing fluids. In Drag reduction in fluid flows, eds. Sellin, R.H.J. and Moses, R.T., Ellis Horwood publ., pp. 61–67.

    Google Scholar 

  • Vleggaar, J. and Tels, M. (1973). Drag reduction by polymer threads. Chem. Eng. Sc. Vol. 28, pp. 965–968.

    Article  Google Scholar 

  • Walker, D.T. and Tiederman, W.G. (1990). Turbulent structure in a channel flow with polymer injection at the wall. J. Fluid Mech. Vol. 218, pp. 377–403.

    Article  Google Scholar 

  • Warholic, M.D., Schmidt, G.M. and Hanratty, T.J. (1999). The influence of a drag reducing surfactant on a turbulent velocity field. J. Fluid Mech. Vol. 388, pp. 1–20.

    Google Scholar 

  • Warholic, M.D., Massah H. and Hanratty, T.J. (1999a). Influence of drag-reducing polymers on.turbulence effects of Reynolds number concentration and mixing. Exp. Fluids Vol. 27, pp. 461–472.

    Article  Google Scholar 

  • Willmarth,W.W., Wei, T. and Lee, C.O. (1987). Laser anemometer measurements of Reynolds stress in a turbulent channel flow with drag reducing polymer additives. Phys. Fluids Vol. 30, pp. 933–935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Nieuwstadt, F.T.M., den Toonder, J.M.J. (2001). Drag reduction by additives: a review. In: Soldati, A., Monti, R. (eds) Turbulence Structure and Modulation. International Centre for Mechanical Sciences, vol 415. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2574-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2574-8_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83339-1

  • Online ISBN: 978-3-7091-2574-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics