Skip to main content

Flexible Multibody Dynamics in Crash Analysis

  • Conference paper
Crashworthiness

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 423))

  • 725 Accesses

Abstract

The design requirements of advanced mechanical and structural systems exploit the ease of use of the powerful computational resources available today to create virtual prototyping environments. These advanced simulation facilities play a fundamental role in the study of systems that undergo large rigid body motion while their components experience material or geometric nonlinear deformations, such as vehicles in impact and crash scenarios. If in one hand the nonlinear finite element method is the most powerful and versatile procedure to describe the flexibility of the system components on the other hand the multibody dynamic formulations are the basis for the most efficient computational techniques that deal with large overall motion. Therefore, the efficiency of the nonlinear finite elements to handle the system deformation can be combined with advantage with the representation of the system components large overall motion using a multibody dynamic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erdman, A. G. and Sandor, G. N., Kineto-elastodynamics–a review of the state of the art and trends, Mech. Mach. Theory, 7, 19–33, 1972.

    Article  Google Scholar 

  2. Lowen, G.G. and Chassapis, C., Elastic behavior of linkages: an update, Mech. Mach. Theory, 21, 33–42, 1986.

    Article  Google Scholar 

  3. Thompson, B.S. and Sung, G.N., Survey of finite element techniques for mechanism design, Mech. Mach. Theory, 21, 351–359, 1986.

    Article  Google Scholar 

  4. Song, J.O. and Haug, E.J., Dynamic analysis of planar flexible mechanisms, Computer Methods in Applied Mechanics and Engineering, 24, 359–381, 1980.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Shabana, A.A. and Wehage, R.A., A coordinate reduction technique for transient amalysis os spatial structures with large angular rotations, Journal of Structural Mechanics, 11, 401–431, 1989.

    Article  Google Scholar 

  6. Shabana, A.A., Dynamics of Multibody Systems, John Wiley & Sons, New York, New York, 1989

    Google Scholar 

  7. Belytschko, T. and Hsieh, B.J., Nonlinear transient finite element analysis with convected coordinates, Int. J. Nume. Methods in Engng., 7, 255–271, 1973.

    Article  ADS  MATH  Google Scholar 

  8. Simo, J.C. and Vu-Quoc, L., On the dynamics in space of rods undergoing large motions — a geometrically exact approach, Comp. Methods Appl. Mech. Eng., 66, 125–161, 1988

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bathe, K.-J. and Bolourchi, S., Large displacement analysis of three-dimensional beam structures, Int. J. Nume. Methods in Engng., 14, 96 1986, 1979

    Google Scholar 

  10. Cardona, A. and Geradin, M., A beam finite element non linear theory with finite rotations, Int.J. Nume Methods in Engng., 26, 2403–2438, 1988.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Ambrosio, J. and Nikravesh, P., Elastic-plastic deformations in multibody dynamics, Nonlinear Dynamics, 3, 85–104, 1992.

    Article  Google Scholar 

  12. Ambrosio, J.A.C. and Pereira, M.S. Multibody dynamic tools for crashworthiness and impact. In Crashworthiness Of Transportation Systems: Structural Impact And Occupant Protection (J.A.C. Ambrosio, M.S. Pereira and F.P. Silva, Eds.), NATO ASI Series E. Vol. 332, 475–521. Dordrecht: Kluwer Academic Publishers, 1997

    Chapter  Google Scholar 

  13. Bathe, K.-J., Finite Element Procedures In Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

    Google Scholar 

  14. Nygard, M.K. and Bergan, P.G., Advances on treating large rotàtions for nonlinear problems, In State Of The Art Surveys On Computational Mechanics (A.K. Noor and J.T. Oden, Eds.), ASME, New York, 305–333, 1989.

    Google Scholar 

  15. Wallrapp, O. and Schwertassek, R., Representation of geometric stiffening in multibody system simulation, Int. J. Nume. Methods Engng. 32, 1833–1850, 1991.

    Article  MATH  Google Scholar 

  16. Hinton, E., Rock, T. and Zienckiewicz, O.C., A note on the mass lumping and related processes in the finite element method, Earthquake Engineering and Structural Mechanics, 4, 245–249, 1976.

    Article  Google Scholar 

  17. Greenwood, D.T., Principles of Dynamics, Prentice-Hall, Englewood-Cliffs, New Jersey, New Jersey, 1965.

    Google Scholar 

  18. Orden, J.C.G. and Goicolea, J.M., Conserving properties in constrained dynamics of flexible multibody systems, Multibody System Dynamics, 4, 221–240, 2000.

    Google Scholar 

  19. Ambrosio, J.A.C., Geometric and material nonlinear deformations in flexible multibody systems, In Proceedings of the NATO-AR W on Computational Aspects Of Nonlinear Structural Systems With Large Rigid Body Motion, (J.A.C. Ambrosio and M. Kleiber, Eds.), Pultusk, Poland, July 2–7, 91–115, 2000.

    Google Scholar 

  20. Gim, G., Vehicle Dynamic Simulation With A Comprehensive Model For Pneumatic Tires, Ph.D. Dissertation, University of Arizona, Tucson, Arizona, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Ambrosio, J.A.C. (2001). Flexible Multibody Dynamics in Crash Analysis. In: Ambrosio, J.A.C. (eds) Crashworthiness. International Centre for Mechanical Sciences, vol 423. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2572-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2572-4_17

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83334-6

  • Online ISBN: 978-3-7091-2572-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics