Advertisement

Genetic Programming Applied to Model Identification

  • M. Sebag
Part of the International Centre for Mechanical Sciences book series (CISM, volume 434)

Summary

This chapter is interested in model identification from empirical data in the context of experimental sciences.

Keywords

Genetic Algorithm Search Space Fitness Function Genetic Programming Rheological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anglano, C.; Giordana, A.; Bello, G. L.; and Saitta, L. 1998. An experimental evaluation of coevolutive concept learning. In Shavlik, J., ed., Proceedings of the 15 th International Conference on Machine Learning, 19–27. Morgan Kaufmann.Google Scholar
  2. Antonisse, J. 1989. A new interpretation of schema notation that overturns the binary encoding constraint. In Schaffer, J. D., ed., Proceedings of the 3rd International Conference on Genetic Algorithms, 86–91. Morgan Kaufmann.Google Scholar
  3. Auer, P.; Cesa-Bianchi, N.; and Gentile, C. 2001. Adaptive and self-confident on-line learning algorithms Machine Learning Journal, to appear.Google Scholar
  4. Bäck, T., and Schütz, M. 1996. Intelligent mutation rate control in canonical GAs. In Ras, Z. W., and Michalewicz, M., eds., Foundation of Intelligent Systems 9th International Symposium, ISMIS ‘86, 158–167. Springer Verlag.Google Scholar
  5. Bäck, T. 1995. Evolutionary Algorithms in theory and practice. New-York: Oxford University Press.Google Scholar
  6. Baluja, S., and Caruana, R. 1995. Removing the genetics from the standard genetic algorithms. In Prieditis, A., and Russel, S., eds., Proceedings of the 12 th International Conference on Machine Learning, 38–46. Morgan Kaufmann.Google Scholar
  7. Banzhaf, W.; Nordin, P.; Keller, R.; and Francone, F. 1998. Genetic Programming — An Introduction On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann.Google Scholar
  8. Cristianini, N., and Shawe-Taylor, J. 2000. An introduction to Support Vector Machines. Cambridge University Press.Google Scholar
  9. BenHamida, S., and Schoenauer, M. 2000. An adaptive algorithm for constrained optimization problems. In Schoenauer, M., et al., eds., Proceedings of the 6 th Conference on Parallel Problems Solving from Nature, 529–539. Springer Verlag, LNCS 1917.Google Scholar
  10. Bennett-III, F.; Koza, J.; Keane, M.; and Andre, D. 1999. Genetic programming: Biologically inspired computation that exhibits creativity in solving non-trivial problems. In AISB ‘89 Symposium on Scientific Creativity,29–38. The Society for the Study of Artificial Intelligence and Simulation of Behaviour.Google Scholar
  11. Berny, A. 2000. Selection and reinforcement learning for combinatorial optimization. In Schoenauer, M., et al., eds., Proceedings of the 6 th Conference on Parallel Problems Solving from Nature, 601–610. Springer Verlag, LNCS 1917.Google Scholar
  12. Beyer, H.-G. 1998. Mutate large, but inherit small On the analysis of mutations in (1,X)-ES with noisy fitness data. In Bäck, T.; Eiben, G.; Schoenauer, M.; and Schwefel, H.-P., eds., Proceedings of the 5 th Conference on Parallel Problems Solving from Nature, 109–118. Springer Verlag, LNCS 1498.Google Scholar
  13. Blickle, T., and Thiele, L. 1995. A mathematical analysis of tournament selection. In Eshelman, L. J., ed., Proceedings of the 6 th International Conference on Genetic Algorithms, 9–16. Morgan Kaufmann.Google Scholar
  14. Blockeel, H., and Raedt, L. D. 1998. Top-down induction of first order logical decision trees. Artificial Intelligence 101 (1–2): 285–297.MathSciNetCrossRefMATHGoogle Scholar
  15. Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C. 1984. Classification and Regression by tree. Wadsworth, Belmont California.Google Scholar
  16. Breiman, L. 1998. Arcing classifiers. Annals of Statistics 26 (3): 801–845.MathSciNetCrossRefMATHGoogle Scholar
  17. Caruana, R. A., and Schaffer, J. D. 1988. Representation and hidden bias: Gray vs binary coding for genetic algorithms. In Proceedings of the 5 th International Conference on Machine Learning. Morgan Kaufmann.Google Scholar
  18. Cerf, R. 1996. An Asymptotic Theory of Genetic Algorithms In Alliot, J.M., et al. eds., Artificial Evolution, 37–53. Springer Verlag, LNCS 1063.Google Scholar
  19. Cervone, G.; Kaufman, K. A.; and Michalski, R. S. 2000. Experimental validations of the learnable evolution model. In Proceedings of International Conference on Evolutionary Computation. MIT Press.Google Scholar
  20. Cun, Y. L. 1987. Modèles connexionnistes de l’apprentissage. Ph.D. Dissertation, Université Pierre et Marie Curie, Paris V I.Google Scholar
  21. Cussens, J. 1997. Part-of-speech tagging using PROGOL. In Dzeroski, S., and Lavraé, N., eds., Proceedings of the 7 th International Workshop on Inductive Logic Programming, volume 1297, 93–108. Springer Verlag.Google Scholar
  22. Daida, J. 1999. Challenges with verification, repeatability, and meaningful comparison in genetic programming: Gibson’s magic. In Proceedings of the Genetic and Evolutionary Conference 99,1069–1076. Morgan Kaufmann.Google Scholar
  23. Das, R., and Whitley, D. 1991. The only challenging problems are deceptive: Global search by solving order-1 hyperplanes. In Belew, R. K., and Booker, L. B., eds., Proceedings of the 4 th International Conference on Genetic Algorithms, 166–173. Morgan Kaufmann.Google Scholar
  24. Dasgupta, D., and Michalewicz, Z. 1997. Evolutionary Algorithms in Engineering Applications. Springer Verlag.Google Scholar
  25. Davis, L. 1989. Adapting operator probabilities in genetic algorithms. In Schaffer, J. D., ed., Proceedings of the 3r d International Conference on Genetic Algorithms, 61–69. Morgan Kaufmann.Google Scholar
  26. de Gans, H. 1990. Genetic programming building artificial nervous systems using genetically programmed neural networks modules. In Porter, R., and Mooney, B., eds., Proceedings of the 7 th International Conference on Machine Learning, 132–139. Morgan Kaufmann.Google Scholar
  27. Deb, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley.Google Scholar
  28. DeJong, K., and Spears, W. 1992. A formal analysis of the role of multi-point crossover in genetic algorithms. Artificial Intelligence 5: 1–26.Google Scholar
  29. DeJong, K. A. 1992. Are genetic algorithms function optimizers ? In Manner, R., and Manderick, B., eds., Proceedings of the 2nd Conference on Parallel Problems Solving from Nature, 3–13. North Holland.Google Scholar
  30. Dzeroski, S., and Todorovski, L. 1993. Discovering dynamics. In Utgoff, P., ed., Proceedings of the 10 111 International Conference on Machine Learning, 97–103. Morgan Kaufmann.Google Scholar
  31. Goldberg, D. E. 1989. Genetic algorithms in search, optimization and machine learning. Addison Wesley.Google Scholar
  32. Eiben, A., and Ruttkay, Z. 1996. Self-adaptivity for constraint satisfaction: Learning penalty functions. In Fukuda, T., ed., Proceedings of the Third IEEE International Conference on Evolutionary Computation, 258–261. IEEE Service Center.Google Scholar
  33. Eiben, A. E.; Hinterding, R.; and Michalewicz, Z. 1999. Parameter control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3 (2): 124.CrossRefGoogle Scholar
  34. El-Beltagy, M.; Nair, P.; and Keane, A. 1999. Metamodeling techniques for evolutionary optimization of computationally expensive problems: Promises and limitations. In Goldberg, D.E., et al., eds., Proceedings of the Genetic and Evolutionary Conference 99, 196–203. Morgan Kaufmann.Google Scholar
  35. Falkenhainer, B., and Michalski, R. 1986. Integrating quantitative and qualitative discovery: The ABACUS system. Machine Learning 367–401.Google Scholar
  36. Fogel, D., and Stayton, L. 1994. On the effectiveness of crossover in simulated evolutionary optimization. BioSystems 32: 171–182.CrossRefGoogle Scholar
  37. Fogel, L. J.; Owens, A. J.; and Walsh, M. J. 1966. Artificial Intelligence through Simulated Evolution. New York: John Wiley.MATHGoogle Scholar
  38. Fogel, D. B. 1995. Evolutionary Computation. Toward a New Philosophy of Machine Intelligence. Piscataway, NJ: IEEE Press.Google Scholar
  39. Forrest, S., and Mitchell, M. 1993. What makes a problem hard for a genetic algorithms • Some anomalous results and their explanation. Machine Learning 285–319.Google Scholar
  40. Gamier, J.; Kallel, L.; and Schoenauer, M. 1999. Rigorous hitting times for binary mutations. IEEE Transactions on Evolutionary Computation 7 (2): 167–203.Google Scholar
  41. Gittins, J. C. 1989. Multi-Armed Bandit Allocation Indices. Chichester: John Wiley.MATHGoogle Scholar
  42. Gittus, J., and Zarka, J. 1985. Modeling small deformations of polycrystals. Elsevier Applied Sciences Publishers.Google Scholar
  43. Glover, E, and Kochenberger, G. 1995. Critical event tabu search for multidimensional knapsack problems. In Proceedings of the International Conference on Metaheuristics for Optimization,113–133. Kluwer Publishing.Google Scholar
  44. Holland, J. H. 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.Google Scholar
  45. Gorges-Schleuter, M. 1998. A comparative study of global and local selection in evolution strategies. In Bäck, T.; Eiben, G.; Schoenauer, M.; and Schwefel, H.-P., eds., Proceedings of the 5 th Conference on Parallel Problems Solving from Nature, 367–377. Springer Verlag, LNCS 1498.Google Scholar
  46. Gruau, F. 1994. Genetic micro programming of neural networks. In Kenneth E. Kinnear, J., ed., Advances in Genetic Programming, 495–518. MIT Press.Google Scholar
  47. Gruau, F. 1996. On using syntactic constraints with genetic programming. In Angeline, R, et al., eds., Advances in Genetic Programming II, 377–394. MIT Press.Google Scholar
  48. Hansen, N., and Ostermeier, A. 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaption. In Proceedings of the Third IEEE International Conference on Evolutionary Computation,312–317. IEEE Press.Google Scholar
  49. Haynes, T.; Schoenefeld, D.; and Wainwright, R. 1996. Type inheritance in strongly typed genetic programming. In Angeline, P., et al., eds., Advances in Genetic Programming II, 359–375. MIT Press.Google Scholar
  50. Hecht-Nielsen, R. 1989. Neuro-computing. Addison Wesley.Google Scholar
  51. Herdy, M. 1996. Evolution strategies with subjective selection. In Voigt, H.-M.; Ebeling, W.; Rechenberg, I.; and Schwefel, H.-R, eds., Proceedings of the 4t h Conference on Parallel Problems Solving from Nature, 22–31. Springer Verlag, LNCS 1141.Google Scholar
  52. Hinterding, R.; Michalewicz, Z.; and Eiben, A. E. 1997. Adaptation in evolutionary com- putation: A survey. In Bäck, T.; Michalewicz, Z.; and Yao, X., eds., Proceedings of the Fourth IEEE International Conference on Evolutionary Computation, 65–69. IEEE Press.Google Scholar
  53. Rasheed, K., and Hirsh, H. 1997. Using Case Based Learning to Improve Genetic Algorithm Based Design Optimization. In Bäck, T., ed., Proceedings of the 7 th International Conference on Genetic Algorithms, 513–520. Morgan Kaufmann.Google Scholar
  54. Höhn, C., and Reeves, C. 1996. Are long path problems hard for genetic algorithms? In Voigt, H.-M.; Ebeling, W.; Rechenberg, I.; and Schwefel, H.-R, eds., Proceedings of the 4 th Conference on Parallel Problems Solving from Nature, 134–143. Springer Verlag, LNCS 1141.Google Scholar
  55. Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Optimization by simulated annealing. Science 220: 671–680.MathSciNetCrossRefMATHGoogle Scholar
  56. Iba, H. 1996. Random tree generation for genetic programming. In Voigt, H.-M.; Ebeling, W.; Rechenberg, I.; and Schwefel, H.-P., eds., Proceedings of the 4th Conference on Parallel Problems Solving from Nature, 144–153. Springer Verlag, LNCS 1141.Google Scholar
  57. Jacobi, N. 1998. Minimal Simulations for Evolutionary Robotics. Ph.D. Dissertation, University of Sussex, Great Britain.Google Scholar
  58. Janikow, C. Z. 1993. A knowledge-intensive genetic algorithm for supervised learning. Machine Learning 13: 189–228.CrossRefGoogle Scholar
  59. Jin, Y.; Olhofer, M.; and Sendhoff, B. 2000. On evolutionary optimisation with approximate fitness functions. In Whitley, D., et al., eds., Proceedings of the Genetic and Evolutionary Conference, 786–793. Morgan KaufmanGoogle Scholar
  60. Joines, J., and Houck, C. 1994. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs. In Michalewicz, Z.; Schaffer, J. D.; Schwefel, H.-P.; Fogel, D. B.; and Kitano, H., eds., Proceedings of the First IEEE International Conference on Evolutionary Computation, 579–584 IEEE Press.Google Scholar
  61. Jones, T., and Forrest, S. 1995. Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In Eshelman, L. J., ed., Proceedings of the 6 th International Conference on Genetic Algorithms, 184–192. Morgan Kaufmann.Google Scholar
  62. Jones, T. 1995. Crossover, macromutation and population-based search. In Eshelman, L. J., ed., Proceedings of the 6 th International Conference on Genetic Algorithms, 73–80. Morgan Kaufmann.Google Scholar
  63. Kallel, L., and Schoenauer, M. 1997. Alternative random initialization in genetic algorithms. In Bäck, T., ed., Proceedings of the 7 th International Conference on Genetic Algorithms, 268–275. Morgan Kaufmann.Google Scholar
  64. Keijzer, M., and Babovic, V. 1999. Dimensionally aware genetic programming In Goldberg, D.E., et al., eds, Proceedings of the Genetic and Evolutionary Conference 99,1069–1076. Morgan Kaufmann.Google Scholar
  65. Kichenin, J.; Dang-Van, K.; and Boytard, K. 1996. Finite element simulation of new two dissipative mechanism models for bulk medium-density polyethylene. J. of Mat. Sc. 31: 1653–1661.CrossRefGoogle Scholar
  66. Koza, J. R., and al. 1999. Genetic Programming III: Automatic Synthesis of Analog Circuits. Massachussetts: MIT Press.Google Scholar
  67. Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by means of Natural Evolution. Massachusetts: MIT Press.Google Scholar
  68. Koza, J. R. 1994. Genetic Programming II: Automatic Discovery of Reusable Programs. Massachussetts: MIT Press.MATHGoogle Scholar
  69. Koza, J. R. 1999. Human-competitive machine intelligence by means of genetic algorithms. In Booker, L.; Forrest, S.; Mitchell, M.; and Riolo, R., eds., Festschrift in honor of John H. Holland, 15–22. Ann Arbor, MI: Center for the Study of Complex Systems.Google Scholar
  70. Lai, T., and Robbins, H. 1985. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics 6: 4–22.MathSciNetCrossRefMATHGoogle Scholar
  71. Langdon, W. B., and Poli, R. 1997. Fitness causes bloat. In Soft Computing in Engineering Design and Manufacturing,13–22. Springer Verlag.Google Scholar
  72. Langley, P.; Simon, H.; and Bradshaw, G. 1983. Rediscovering chemistry with the BACON system. In Michalski, R.; Carbonell, J.; and Mitchell, T., eds., Machine Learning: an artificial intelligence approach, volume 1. Morgan Kaufmann.Google Scholar
  73. Larranaga, P., and Lozano, J. A. 2001. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers.Google Scholar
  74. Levenick, J. R. 1991. Inserting introns improves genetic algorithm success rate Taking a cue from biology. In Belew, R. K., and Booker, L. B., eds., Proceedings of the 4th International Conference on Genetic Algorithms, 123–127. Morgan Kauffmann.Google Scholar
  75. Mahfoud, S. W. 1995. A comparison of parallel and sequential niching techniques. In Eshelman, L. J., ed., Proceedings of the 6 th International Conference on Genetic Algorithms, 136–143. Morgan Kaufmann.Google Scholar
  76. Mansanne, F.; Carne, F.; Ehinger, A..; and Schoenauer, M. 1999. Evolutionary algorithms as fitness function debuggers. In Ras, Z. W., and Skowron, A., eds., Foundation of Intelligent Systems 12th International Symposium, ISMIS99. Springer Verlag, LNCS 1609.Google Scholar
  77. Merz, P., and Freisleben, B. 1999. Fitness landscapes and memetic algorithm design. In Come, D.; Dorigo, M.; and Glover, F., eds., New Ideas in Optimization. 245–260. London: McGraw-Hill.Google Scholar
  78. Radcliffe, N. J. 1991. Equivalence class analysis of genetic algorithms. Complex Systems 5: 183–20.MathSciNetMATHGoogle Scholar
  79. Michalewicz, Z., and Schoenauer, M. 1996. Evolutionary Algorithms for Constrained Parameter Optimization Problems. IEEE Transactions on Evolutionary Computation 4 (1): 132.Google Scholar
  80. Michalewicz, Z. 1996. Genetic Algorithms+Data Structures=Evolution Programs. New-York: Springer Verlag. 3rd edition.MATHGoogle Scholar
  81. Mitchell, M. 1996. An Introduction to Genetic Algorithms. MIT Press. Mitchell, T. 1997. Machine Learning. McGraw-Hill.Google Scholar
  82. Montana, D. J. 1995. Strongly typed genetic programming. Evolutionary Computation 3 (2): 199–230.CrossRefGoogle Scholar
  83. Muggleton, S., and De Raedt, L. 1994. Inductive logic programming: Theory and methods. Journal of Logic Programming 19: 629–679.MathSciNetCrossRefGoogle Scholar
  84. Muggleton, S. 1995. Inverse entailment and PROGOL. New Gen. Comput. 13: 245–286.CrossRefGoogle Scholar
  85. Naudts, B., and Kallel, L. 2000. Comparison of summary statistics of fitness landscapes. IEEE Transactions on Evolutionary Computation 4 (1): 1–15.CrossRefGoogle Scholar
  86. Persoz, B. 1960. Introduction à la rhéologie. Dunod, Paris.MATHGoogle Scholar
  87. Poloni, C., and Pediroda, V. 1997. GA coupled with computationally expensive simulations: tools to improve efficiency. In Genetic Algorithms and Evolution Strategies in Engineering and Computer Sciences,267–288. John Wiley.Google Scholar
  88. Quadraglia, D.; Pénaux, J.; Poloni, C.; and Winter, G., eds. 1997. Genetic Algorithms and Evolution Strategies in Engineering and Computer Sciences. John Wiley.Google Scholar
  89. Quarles, A.; Pederson, D.; and Sangiovanni-Vincentelli, A. 1994. SPICE version 3f5 user manual. Technical report, Univ. Berkeley, Cal, USA.Google Scholar
  90. Quinlan, J. 1990. Learning logical definition from relations. Machine Learning 5: 239–266.Google Scholar
  91. Rabinovich, Y., and Wigderson, A. 1999. Techniques for bounding the convergence rate of genetic algorithms Random Structures Algorithms 2: 111–138.MathSciNetCrossRefGoogle Scholar
  92. Radcliffe, N. J., and Surry, P. D. 1994. Formal memetic algorithms. In Fogarthy, T., ed., Evolutionary Computing: AISB Workshop, 1–16. Springer Verlag, LNCS 865.Google Scholar
  93. Sanchez-Palencia, E., and Zaoui, A. 1987. Homogenization techniques for composite media. Lecture Notes in Physics, Springer Verlag.CrossRefMATHGoogle Scholar
  94. Ratle, A., and Sebag, M. 2000. Genetic programming and domain knowledge: Beyond the limitations of grammar-guided machine discovery. In Schoenauer, M., et al., eds, Proceedings of the 6 th Conference on Parallel Problems Solving from Nature, 211–220. Springer Verlag, LNCS 1917.Google Scholar
  95. Ratle, A., and Sebag, M. 2001. Avoiding the bloat with stochastic grammar-based genetic programming. In Collet, P., et al., eds., Artificial Evolution 2001. Springer Verlag. to appear.Google Scholar
  96. Ratle, A. 1998. Accelerating the convergence of evolutionary algorithms by fitness landscape approximation. In Bäck, T.; Eiben, G.; Schoenauer, M.; and Schwefel, H.-P., eds., Proceedings of the 5 th Conference on Parallel Problems Solving from Nature, 87–96. Springer Verlag, LNCS 1498.Google Scholar
  97. Rechenberg, I. 1973. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Stuttgart: Fromman-Hozlboog Verlag.Google Scholar
  98. Richards, N.; Moriarty, D.; and Miikkulainen, R. 1998. Evolving neural networks to play go. Applied Intelligence 8: 85–96.CrossRefGoogle Scholar
  99. Rosca, D., and Ballard, D. 1994. Hierarchical self-organization in genetic programming. In Cohen, W., and Hirsh, H., eds., Proceedings of the 11 th International Conference on Machine Learning. Morgan Kaufmann.Google Scholar
  100. Rudolph, G. 1994. Convergence analysis of canonical genetic algorithm. IEEE Transactions on Neural Networks 5 (1): 96–101.CrossRefGoogle Scholar
  101. Rudolph, G. 1997. Asymptotical convergence rates of simple evolutionary algorithms under factorizing mutation distributions. In Hao, J.-K.; et al., eds., Artificial Evolution’97. Springer Verlag, LNCS 1363.Google Scholar
  102. Rumelhart, D., and McClelland, J. 1986. Parallel Distributed Processing. MIT Press.Google Scholar
  103. Ryan, C.; Collins, J.; and O’Neill, M. 1998. Grammatical evolution: Evolving programs for an arbitrary language. In Banzhaf, W.; Poli, R.; Schoenauer, M.; and Fogarty, T., eds., Genetic Programming, First European Workshop, EuroGP98, 83–96. Springer Verlag, LNCS 1391.Google Scholar
  104. Salustowicz, R., and Schmidhuber, J. 1997. Probabilistic incremental program evolution. Evolutionary Computation 5 (2): 123–141.CrossRefGoogle Scholar
  105. Sareni, B., and Krähenbühl, L. 1998. Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary Computation 2 (3): 97–106.CrossRefGoogle Scholar
  106. Schapire, R. 1999. Theoretical views of boosting. In Proceedings of EuroCOLT-99, European Conference on Computational Learning Theory, 1–10.Google Scholar
  107. Schnier, T., and Gero, J. 1998. From Mondrian to Frank Lloyd Wright: Transforming evolving representations. In Parmee, I., ed., Adaptive Computing in Design and Manufacture, 207–220. Springer Verlag.Google Scholar
  108. Schoenauer, M., and Michalewicz, Z. 1996. Evolutionary computation at the edge of feasibility. In Voigt, H.-M.; Ebeling, W.; Rechenberg, I.; and Schwefel, H.-P., eds., Proceedings of the 4 th Conference on Parallel Problems Solving from Nature, 245–254. Springer Verlag, LNCS 1141.Google Scholar
  109. Schoenauer, M., and Michalewicz, Z. 1997. Boundary operators for constrained parameter optimization problems. In Bäck, T., ed., Proceedings of the 7th International Conference on Genetic Algorithms, 322–329. Morgan Kaufmann.Google Scholar
  110. Schoenauer, M., and Xanthakis, S. 1993. Constrained GA optimization. In Forrest, S., ed., Proceedings of the 5 th International Conference on Genetic Algorithms, 573–580. Morgan Kaufmann.Google Scholar
  111. Schoenauer, M.; Sebag, M.; Jouve, F.; Lamy, B.; and Maitournam, H. 1996. Evolutionary identification of macro-mechanical models. In Angeline, P. J., and K. E. Kinnear, J., eds., Advances in Genetic Programming II, 467–488. Cambridge, MA: MIT Press.Google Scholar
  112. Schwefel, H.-P. 1981. Numerical Optimization of Computer Models. New-York: John Wiley & Sons. 1995 — 2nd edition.Google Scholar
  113. Sebag, M., and Ducoulombier, A. 1998. Extending population-based incremental learning to continuous search spaces. In Bäck, T., et al., eds., Proceedings of the 5 th Conference on Parallel Problems Solving from Nature, 418–427. Springer Verlag, LNCS 1498.Google Scholar
  114. Sebag, M., and Rouveirol, C. 2000. Resource-bounded relational reasoning: Induction and deduction through stochastic matching. Machine Learning 38: 41–62.CrossRefMATHGoogle Scholar
  115. Sebag, M.; Schoenauer, M.; and Maitournam, H. 1997. Parametric and non-parametric identification of macro-mechanical models. In Quadraglia, D.; Périaux, J.; Poloni, C.; and Winter, G., eds., Genetic Algorithms and Evolution Strategies in Engineering and Computer Sciences, 327–340. John Wiley.Google Scholar
  116. Simon, H.A. 1982. Models of Bounded Rationality. Cambridge, MIT Press.Google Scholar
  117. Soule, T., and Foster, J. A. 1997. Code size and depth flows in genetic programming In Koza, J., et al., eds., Genetic Programming 1997: Proceedings of the Second Annual Conference, 313–320. Morgan Kaufmann.Google Scholar
  118. Srinivasan, A.; Muggleton, S.; Sternberg, M.; and King, R. 1996. Theories for mutagenicity: a study in first order and feature-based induction. Artificial Intelligence 85: 277–299.CrossRefGoogle Scholar
  119. Starkweather, T.; Whitley, D.; and Mathias, K. 1991. Optimization Using Distributed Genetic Algorithms. In Schwefel, H., and Manner, R., eds., Parallel Problem Solving from Nature, 176–185. Springer Verlag.Google Scholar
  120. Sutton, R., and Barto, A. G. 1998. Reinforcement learning. MIT Press.Google Scholar
  121. Syswerda, G. 1989. Uniform crossover in genetic algorithms. In Schaffer, J. D., ed., Proceedings of the 3 rd International Conference on Genetic Algorithms, 2–9. Morgan Kaufmann.Google Scholar
  122. Todorovski, L., and Dzeroski, S. 2001. Using domain knowledge on population dynamics modeling for equation discovery. In de Raedt, L., and Flach, P., eds., Proceedings of ECML-01, European Conference on Machine Learning, 478–490. Springer Verlag, LNAI 2167.Google Scholar
  123. Vapnik, V.; Levin, E.; and Cun, Y. L. 1994. Measuring the VC-dimension of a learning machine. Neural Computation 6 (5): 851–876.CrossRefGoogle Scholar
  124. Vapnik, V. N. 1995. The Nature of Statistical Learning. Springer Verlag. Vapnik, V. N. 1998. Statistical Learning Theory. Wiley.Google Scholar
  125. Venturini, G.; Slimane, M.; Morin, F.; and de Beauville, J. A. 1997. On using interactive genetic algorithms for knowledge discovery in databases. In Bäck, T., ed., Proceedings of the 7th International Conference on Genetic Algorithms, 696–703. Morgan Kaufmann.Google Scholar
  126. Washio, T., and Motoda, H. 1997. Discovering admissible models of complex systems based on scale-types and identity constraints. In Proc. of Int. Joint Conf. on Artificial Intelligence, 810–817.Google Scholar
  127. Washio, T.; Motoda, H.; and Niwa, Y. 2001. Discovering admissible simultaneous equation models from observed data. In de Raedt, L., and Flach, P., eds., Proceedings of ECML01, European Conference on Machine Learning, 539–551. Springer Verlag, LNAI 2167.Google Scholar
  128. Whigham, P. 1995. Inductive bias and genetic programming In IEEE Conference on Evolutionary Computation,461–466. IEEE Press.Google Scholar
  129. Yao, X.; Liu, Y.; and Lin, G. 1999. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3 (2): 82–102.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • M. Sebag
    • 1
  1. 1.Ecole PolytechniquePalaiseauFrance

Personalised recommendations