Skip to main content

The Homogenization Method for Topology and Shape Optimization

  • Chapter
Topology Optimization in Structural Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 374))

Abstract

This paper is devoted to an elementary introduction to the homogenization theory and its application to topology and shape optimization of elastic structures. It starts with a brief survey of periodic homogenization, H- or G-convergence, and the mathematical modeling of composite materials. Then, these notions are used for minimum compliance and weight design of elastic structures in two or three space dimension. Theoretical, as well as numerical, aspects of the homogenization method are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Achtziger, M. Bendsoe, A. Ben-Tal, J. Zowe, Equivalent displacement based formulations for maximum strength truss topology design, IMPACT of Computing in Science and Engineering, 4, pp. 315–345 (1992).

    MathSciNet  MATH  Google Scholar 

  2. G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23.6, pp. 1482–1518 (1992).

    Google Scholar 

  3. G. Allaire, Structural optimization using optimal microstructures, In “MECAMAT 93 International Seminar on Micromechanics of Materials”, Collection de la Direction des Etudes et Recherches d’Electricité de France, Eyrolles, Paris (1993).

    Google Scholar 

  4. G. Allaire, Explicit lamination parameters for three-dimensional shape optimization, Control and Cybernetics 23, pp. 309–326 (1994).

    MathSciNet  MATH  Google Scholar 

  5. G. Allaire, Relaxation of structural optimization problems by homogenization, “Trends in Applications of Mathematics to Mechanics”, M.M.Marques and J.F.Rodrigues Eds., Pitman monographs and surveys in pure and applied mathematics 77, pp.237–251, Longman, Harlow (1995).

    Google Scholar 

  6. G. Allaire, E. Bonnetier, G. Francfort, F. Jouve, Shape optimization by the homogenization method,to appear in Numerische Mathematik.

    Google Scholar 

  7. G. Allaire, G. Francfort, A numerical algorithm for topology and shape optimization, In “Topology design of structures” Nato ASI Series E, M. Bendsoe et al. eds., 239–248, Kluwer, Dordrecht (1993).

    Chapter  Google Scholar 

  8. G. Allaire, R.V. Kohn, Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quat. Appl. Math. 51, 643–674 (1993).

    MathSciNet  MATH  Google Scholar 

  9. G. Allaire, R.V. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures, Europ. J. Mech. A/Solids 12, 6, 839–878 (1993).

    MathSciNet  MATH  Google Scholar 

  10. M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl. Math. 47, 6, 1216–1228 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Avellaneda, G. Milton, Bounds on the effective elasticity tensor of composites based on two point correlations, in Proceedings of the ASME Energy Technology Conference and Exposition, Houston, 1989, D. Hui et al. eds., ASME Press, New York (1989).

    Google Scholar 

  12. N. Bakhvalov, G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht (1989).

    Book  Google Scholar 

  13. M. Bendsoe, Optimal shape design as a material distribution problem, Struct. Optim. 1, 193–202 (1989).

    Article  Google Scholar 

  14. M. Bendsoe, Methods for optimization of structural topology, shape and material, Springer Verlag (1995).

    Google Scholar 

  15. M. Bendsoe, A. Diaz, N. Kikuchi, Topology and generalized layout optimization of structures, In “Topology Optimization of Structures” Nato ASI Series E, M. Bendsoe et al. eds., pp.159–205, Kluwer, Dordrecht (1993).

    Google Scholar 

  16. M. Bendsoe, N. Kikuchi, Generating Optimal Topologies in Structural Design Using a Homogenization Method, Comp. Meth. Appl. Mech. Eng. 71, 197–224 (1988).

    Article  MathSciNet  Google Scholar 

  17. A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam (1978).

    MATH  Google Scholar 

  18. F. Brezzi, M. Fortin, Mixed and hybrid Finite Element Methods, Springer, Berlin, 1991.

    Book  MATH  Google Scholar 

  19. G. Cheng, N. Olhoff, An investigation concerning optimal design of solid elastic plates, Int. J. Solids Struct. 16, pp. 305–323 (1981).

    Article  MathSciNet  Google Scholar 

  20. R. Christensen, Mechanics of Composite Materials, Wiley-Interscience, New York (1979).

    Google Scholar 

  21. G. Dal Maso, An Introduction to F-Convergence, Birkhäuser, Boston (1993).

    Google Scholar 

  22. G. Dal Maso, L. Modica, Nonlinear stochastic homogenization and ergodic theory, Journal für die reine und angewandte Mathematik 368, pp. 28–42 (1986).

    MATH  Google Scholar 

  23. E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell’area, Rendi Conti di Mat. 8, pp. 277–294. (1975).

    MATH  Google Scholar 

  24. E. De Giorgi, G-operators and F-convergence, Proceedings of the international congress of mathematicians (Warsazwa, August 1983), PWN Polish Scientific Publishers and North Holland, pp. 1175–1191 (1984).

    Google Scholar 

  25. E. De Giorgi, S. Sagnolo, Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ondine, Boll. Un. Mat. It. 8, pp. 391–411 (1973).

    MATH  Google Scholar 

  26. H. Eschenauer, V. Kobelev, A. Schumacher, Bubble method of topology and shape optimization of structures, Struct. Optim. 8, pp. 42–51 (1994).

    Article  Google Scholar 

  27. G. Francfort, F. Murat, Homogenization and Optimal Bounds in Linear Elasticity, Arch. Rat. Mech. Anal. 94, 307–334 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Francfort, F. Murat, L. Tartar, Fourth Order Moments of a Non-Negative Measure on S 2 and Application, to appear in Arch. Rat. Mech. Anal. (1995).

    Google Scholar 

  29. L. Gibianski, A. Cherkaev, Design of composite plates of extremal rigidity, Ioffe Physicotechuical Institute preprint (1984).

    Google Scholar 

  30. Y. Grabovsky, R. Kohn, Microstructures minimizing the energy of a two-phase elastic composite in two space dimensions II: the Vigdergauz microstructure,to appear.

    Google Scholar 

  31. Z: Hashin, The elastic moduli of heterogeneous materials, J. Appl. Mech. 29, 143–150 (1963).

    Article  MathSciNet  Google Scholar 

  32. Z. Hashin, S. Strikman, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids 11, 127–140 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Jog, R. Haber, M. Bendsoe, A displacement-based topology design method with self-adaptive layered materials, Topology design of structures, Nato ASI Series E, M. Bendsoe et al. eds., 219–238, Kluwer, Dordrecht (1993).

    Google Scholar 

  34. C. Jog, R. Haber, M. Bendsoe, Topology design with optimized, self-adaptative materials, Int. Journal for Numerical Methods in Engineering 37, 1323–1350 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  35. U. Kirsch, Optimal topologies of truss structures, Comp. Meth. Engrg. 72, pp. 15–28 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Kohn, Recent progress in the mathematical modeling of composite materials, Composite Materials Response: Constitutive Relations and Damage Mechanisms, G. Sih et al. eds., pp.155–177, Elsevier, New York (1988).

    Google Scholar 

  37. R. Kohn, G. Strang, Optimal Design and Relaxation of Variational Problems I-II-III, Comm. Pure Appl. Math. 39, 113–182, 353–377 (1986).

    Google Scholar 

  38. S. Kozlov, Averaging of random operators Math. USSR Sbornik 37, pp. 167–180 (1980).

    Article  MATH  Google Scholar 

  39. J.L. Lions, Some methods in the mathematical analysis of systems and their control, Science Press, Beijing, Gordon and Breach, New York (1981).

    Google Scholar 

  40. K. Lurie, A. Cherkaev, Exact estimates of the conductivity of a binary mixture of isotropic materials, Proc. Royal Soc. Edinburgh 104A, pp. 21–38 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  41. K. Lurie, A. Cherkaev, A. Fedorov, Regularization of Optimal Design Problems for Bars and Plates 1,11, J. Optim. Th. Appl. 37, pp.499–521, 523–543 (1982).

    Google Scholar 

  42. A. Michell, The limits of economy of material in frame-structures, Phil. Mag. 8, 589–597 (1904).

    Article  MATH  Google Scholar 

  43. G. Milton, Modeling the properties of composites by laminates, Homogenization and effective moduli of materials and media, J. Ericksen et al. eds., pp. 150–174, Springer Verlag, New York (1986).

    Google Scholar 

  44. F. Murat, Contre-exemples pour divers probèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. 112, 49–68 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  45. F. Murat, L. Tartar, H-convergence, Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger (1977).

    Google Scholar 

  46. F. Murat, L. Tartar, Calcul des variations et homogénéisation, in Les méthodes de l’homogénéisation: théorie et applications en physique, Coll. de la Dir. des Etudes et Recherches EDF, pp. 319–370, Eyrolles, Paris (1985).

    Google Scholar 

  47. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization SIAM J. Math. Anal. 20, pp. 608–629 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  48. O. Oleinik, A. Shamaev, G. Yosifian, Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics an Its Application 26, Elsevier, Amsterdam (1992).

    Google Scholar 

  49. N. Olhoff, M. Bendsoe, J. Rasmussen, On CAD-integrated structural topology and design optimization, Comp. Meth. Appl. Mechs. Engng. 89, pp. 259–279 (1992).

    Article  Google Scholar 

  50. G. Papanicolaou, S. Varadhan, Boundary value problems with rapidly oscillating random. coefficients, Colloquia Mathematica Societatis Janos Bolyai, North-Holland, Amsterdam, pp. 835–873 (1982).

    Google Scholar 

  51. O. Pironneau, Optimal shape design for elliptic systems, Springer Verlag, Berlin (1984).

    Book  MATH  Google Scholar 

  52. W. Prager, G. Rozvany, Optimal layout of grillages, J. Struct. Mech. 5, 1–18 (1977).

    Article  Google Scholar 

  53. G. Rozvany, M. Bendsoe, U. Kirsch, Layout optimization of structures, Applied Mechanical“ reviews 48, 2, pp. 41–118 (1995).

    Article  Google Scholar 

  54. G. Rozvany, M. Zhou, T. Birker, O. Sigmund, Topology optimization using iterative continuum-type optimality criteria (CO C) methods for discretized systems, Topology design of structures, Nato ASI Series E, M. Bendsoe et al. eds., 273–286, Kluwer, Dordrecht (1993).

    Google Scholar 

  55. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Lecture Notes in Physics 129 (1980).

    Google Scholar 

  56. S. Spagnolo, Sulla convergenza delle soluzioni di equazioni paraboliche ed ellittiche, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (3), 22, pp. 571–597 (1968).

    MathSciNet  MATH  Google Scholar 

  57. S. Spagnolo, Convergence in energy for elliptic operators, Proc. Third Symp. Numer. Solut. Partial Diff. Equat. (College Park 1975), B. Hubbard ed., Academic Press, San Diego, pp.469–498 (1976).

    Google Scholar 

  58. K. Suzuki, N. Kikuchi, A homogenization method for shape and topology optimization, Comp. Meth. Appl. Mech. Eng. 93, 291–318 (1991).

    Article  MATH  Google Scholar 

  59. L. Tartar, Quelques remarques sur l’homogénéisation, Proc. of the Japan-France Seminar 1976 “Functional Analysis and Numerical Analysis”, Japan Society for the Promotion of Sciences, pp. 469–482 (1978).

    Google Scholar 

  60. L. Tartar, Estimations Fines des Coéicients Homogénéisés, Ennio de Giorgi colloquium, P. Krée ed., Pitman Research Notes in Math. 125, 168–187 (1985).

    Google Scholar 

  61. S. Vigdergauz, Effective elastic parameters of a plate with a regular system of equal-strength holes, Mech. Solids 21, 162–166 (1986).

    Google Scholar 

  62. V. Zhikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators, Springer, Berlin, (1995).

    Google Scholar 

  63. M. Zhou, G. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comp. Meth. App. Mech. Engrg. 89, 309–336 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Allaire, G. (1997). The Homogenization Method for Topology and Shape Optimization. In: Rozvany, G.I.N. (eds) Topology Optimization in Structural Mechanics. International Centre for Mechanical Sciences, vol 374. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2566-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2566-3_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82907-3

  • Online ISBN: 978-3-7091-2566-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics