The Homogenization Method for Topology and Shape Optimization

  • G. Allaire
Part of the International Centre for Mechanical Sciences book series (CISM, volume 374)


This paper is devoted to an elementary introduction to the homogenization theory and its application to topology and shape optimization of elastic structures. It starts with a brief survey of periodic homogenization, H- or G-convergence, and the mathematical modeling of composite materials. Then, these notions are used for minimum compliance and weight design of elastic structures in two or three space dimension. Theoretical, as well as numerical, aspects of the homogenization method are investigated.


Topology Optimization Optimal Shape Homogenization Method Homogenization Theory Fourth Order Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Achtziger, M. Bendsoe, A. Ben-Tal, J. Zowe, Equivalent displacement based formulations for maximum strength truss topology design, IMPACT of Computing in Science and Engineering, 4, pp. 315–345 (1992).MathSciNetMATHGoogle Scholar
  2. [2]
    G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23.6, pp. 1482–1518 (1992).Google Scholar
  3. [3]
    G. Allaire, Structural optimization using optimal microstructures, In “MECAMAT 93 International Seminar on Micromechanics of Materials”, Collection de la Direction des Etudes et Recherches d’Electricité de France, Eyrolles, Paris (1993).Google Scholar
  4. [4]
    G. Allaire, Explicit lamination parameters for three-dimensional shape optimization, Control and Cybernetics 23, pp. 309–326 (1994).MathSciNetMATHGoogle Scholar
  5. [5]
    G. Allaire, Relaxation of structural optimization problems by homogenization, “Trends in Applications of Mathematics to Mechanics”, M.M.Marques and J.F.Rodrigues Eds., Pitman monographs and surveys in pure and applied mathematics 77, pp.237–251, Longman, Harlow (1995).Google Scholar
  6. [6]
    G. Allaire, E. Bonnetier, G. Francfort, F. Jouve, Shape optimization by the homogenization method,to appear in Numerische Mathematik.Google Scholar
  7. [7]
    G. Allaire, G. Francfort, A numerical algorithm for topology and shape optimization, In “Topology design of structures” Nato ASI Series E, M. Bendsoe et al. eds., 239–248, Kluwer, Dordrecht (1993).CrossRefGoogle Scholar
  8. [8]
    G. Allaire, R.V. Kohn, Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quat. Appl. Math. 51, 643–674 (1993).MathSciNetMATHGoogle Scholar
  9. [9]
    G. Allaire, R.V. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures, Europ. J. Mech. A/Solids 12, 6, 839–878 (1993).MathSciNetMATHGoogle Scholar
  10. [10]
    M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl. Math. 47, 6, 1216–1228 (1987).MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    M. Avellaneda, G. Milton, Bounds on the effective elasticity tensor of composites based on two point correlations, in Proceedings of the ASME Energy Technology Conference and Exposition, Houston, 1989, D. Hui et al. eds., ASME Press, New York (1989).Google Scholar
  12. [12]
    N. Bakhvalov, G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht (1989).CrossRefGoogle Scholar
  13. [13]
    M. Bendsoe, Optimal shape design as a material distribution problem, Struct. Optim. 1, 193–202 (1989).CrossRefGoogle Scholar
  14. [14]
    M. Bendsoe, Methods for optimization of structural topology, shape and material, Springer Verlag (1995).Google Scholar
  15. [15]
    M. Bendsoe, A. Diaz, N. Kikuchi, Topology and generalized layout optimization of structures, In “Topology Optimization of Structures” Nato ASI Series E, M. Bendsoe et al. eds., pp.159–205, Kluwer, Dordrecht (1993).Google Scholar
  16. [16]
    M. Bendsoe, N. Kikuchi, Generating Optimal Topologies in Structural Design Using a Homogenization Method, Comp. Meth. Appl. Mech. Eng. 71, 197–224 (1988).MathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam (1978).MATHGoogle Scholar
  18. [18]
    F. Brezzi, M. Fortin, Mixed and hybrid Finite Element Methods, Springer, Berlin, 1991.CrossRefMATHGoogle Scholar
  19. [19]
    G. Cheng, N. Olhoff, An investigation concerning optimal design of solid elastic plates, Int. J. Solids Struct. 16, pp. 305–323 (1981).MathSciNetCrossRefGoogle Scholar
  20. [20]
    R. Christensen, Mechanics of Composite Materials, Wiley-Interscience, New York (1979).Google Scholar
  21. [21]
    G. Dal Maso, An Introduction to F-Convergence, Birkhäuser, Boston (1993).Google Scholar
  22. [22]
    G. Dal Maso, L. Modica, Nonlinear stochastic homogenization and ergodic theory, Journal für die reine und angewandte Mathematik 368, pp. 28–42 (1986).MATHGoogle Scholar
  23. [23]
    E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell’area, Rendi Conti di Mat. 8, pp. 277–294. (1975).MATHGoogle Scholar
  24. [24]
    E. De Giorgi, G-operators and F-convergence, Proceedings of the international congress of mathematicians (Warsazwa, August 1983), PWN Polish Scientific Publishers and North Holland, pp. 1175–1191 (1984).Google Scholar
  25. [25]
    E. De Giorgi, S. Sagnolo, Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ondine, Boll. Un. Mat. It. 8, pp. 391–411 (1973).MATHGoogle Scholar
  26. [26]
    H. Eschenauer, V. Kobelev, A. Schumacher, Bubble method of topology and shape optimization of structures, Struct. Optim. 8, pp. 42–51 (1994).CrossRefGoogle Scholar
  27. [27]
    G. Francfort, F. Murat, Homogenization and Optimal Bounds in Linear Elasticity, Arch. Rat. Mech. Anal. 94, 307–334 (1986).MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    G. Francfort, F. Murat, L. Tartar, Fourth Order Moments of a Non-Negative Measure on S 2 and Application, to appear in Arch. Rat. Mech. Anal. (1995).Google Scholar
  29. [29]
    L. Gibianski, A. Cherkaev, Design of composite plates of extremal rigidity, Ioffe Physicotechuical Institute preprint (1984).Google Scholar
  30. [30]
    Y. Grabovsky, R. Kohn, Microstructures minimizing the energy of a two-phase elastic composite in two space dimensions II: the Vigdergauz microstructure,to appear.Google Scholar
  31. [31]
    Z: Hashin, The elastic moduli of heterogeneous materials, J. Appl. Mech. 29, 143–150 (1963).MathSciNetCrossRefGoogle Scholar
  32. [32]
    Z. Hashin, S. Strikman, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids 11, 127–140 (1963).MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    C. Jog, R. Haber, M. Bendsoe, A displacement-based topology design method with self-adaptive layered materials, Topology design of structures, Nato ASI Series E, M. Bendsoe et al. eds., 219–238, Kluwer, Dordrecht (1993).Google Scholar
  34. [34]
    C. Jog, R. Haber, M. Bendsoe, Topology design with optimized, self-adaptative materials, Int. Journal for Numerical Methods in Engineering 37, 1323–1350 (1994).MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    U. Kirsch, Optimal topologies of truss structures, Comp. Meth. Engrg. 72, pp. 15–28 (1989).MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    R. Kohn, Recent progress in the mathematical modeling of composite materials, Composite Materials Response: Constitutive Relations and Damage Mechanisms, G. Sih et al. eds., pp.155–177, Elsevier, New York (1988).Google Scholar
  37. [37]
    R. Kohn, G. Strang, Optimal Design and Relaxation of Variational Problems I-II-III, Comm. Pure Appl. Math. 39, 113–182, 353–377 (1986).Google Scholar
  38. [38]
    S. Kozlov, Averaging of random operators Math. USSR Sbornik 37, pp. 167–180 (1980).CrossRefMATHGoogle Scholar
  39. [39]
    J.L. Lions, Some methods in the mathematical analysis of systems and their control, Science Press, Beijing, Gordon and Breach, New York (1981).Google Scholar
  40. [40]
    K. Lurie, A. Cherkaev, Exact estimates of the conductivity of a binary mixture of isotropic materials, Proc. Royal Soc. Edinburgh 104A, pp. 21–38 (1986).MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    K. Lurie, A. Cherkaev, A. Fedorov, Regularization of Optimal Design Problems for Bars and Plates 1,11, J. Optim. Th. Appl. 37, pp.499–521, 523–543 (1982).Google Scholar
  42. [42]
    A. Michell, The limits of economy of material in frame-structures, Phil. Mag. 8, 589–597 (1904).CrossRefMATHGoogle Scholar
  43. [43]
    G. Milton, Modeling the properties of composites by laminates, Homogenization and effective moduli of materials and media, J. Ericksen et al. eds., pp. 150–174, Springer Verlag, New York (1986).Google Scholar
  44. [44]
    F. Murat, Contre-exemples pour divers probèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. 112, 49–68 (1977).MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    F. Murat, L. Tartar, H-convergence, Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger (1977).Google Scholar
  46. [46]
    F. Murat, L. Tartar, Calcul des variations et homogénéisation, in Les méthodes de l’homogénéisation: théorie et applications en physique, Coll. de la Dir. des Etudes et Recherches EDF, pp. 319–370, Eyrolles, Paris (1985).Google Scholar
  47. [47]
    G. Nguetseng, A general convergence result for a functional related to the theory of homogenization SIAM J. Math. Anal. 20, pp. 608–629 (1989).MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    O. Oleinik, A. Shamaev, G. Yosifian, Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics an Its Application 26, Elsevier, Amsterdam (1992).Google Scholar
  49. [49]
    N. Olhoff, M. Bendsoe, J. Rasmussen, On CAD-integrated structural topology and design optimization, Comp. Meth. Appl. Mechs. Engng. 89, pp. 259–279 (1992).CrossRefGoogle Scholar
  50. [50]
    G. Papanicolaou, S. Varadhan, Boundary value problems with rapidly oscillating random. coefficients, Colloquia Mathematica Societatis Janos Bolyai, North-Holland, Amsterdam, pp. 835–873 (1982).Google Scholar
  51. [51]
    O. Pironneau, Optimal shape design for elliptic systems, Springer Verlag, Berlin (1984).CrossRefMATHGoogle Scholar
  52. [52]
    W. Prager, G. Rozvany, Optimal layout of grillages, J. Struct. Mech. 5, 1–18 (1977).CrossRefGoogle Scholar
  53. [53]
    G. Rozvany, M. Bendsoe, U. Kirsch, Layout optimization of structures, Applied Mechanical“ reviews 48, 2, pp. 41–118 (1995).CrossRefGoogle Scholar
  54. [54]
    G. Rozvany, M. Zhou, T. Birker, O. Sigmund, Topology optimization using iterative continuum-type optimality criteria (CO C) methods for discretized systems, Topology design of structures, Nato ASI Series E, M. Bendsoe et al. eds., 273–286, Kluwer, Dordrecht (1993).Google Scholar
  55. [55]
    E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Lecture Notes in Physics 129 (1980).Google Scholar
  56. [56]
    S. Spagnolo, Sulla convergenza delle soluzioni di equazioni paraboliche ed ellittiche, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (3), 22, pp. 571–597 (1968).MathSciNetMATHGoogle Scholar
  57. [57]
    S. Spagnolo, Convergence in energy for elliptic operators, Proc. Third Symp. Numer. Solut. Partial Diff. Equat. (College Park 1975), B. Hubbard ed., Academic Press, San Diego, pp.469–498 (1976).Google Scholar
  58. [58]
    K. Suzuki, N. Kikuchi, A homogenization method for shape and topology optimization, Comp. Meth. Appl. Mech. Eng. 93, 291–318 (1991).CrossRefMATHGoogle Scholar
  59. [59]
    L. Tartar, Quelques remarques sur l’homogénéisation, Proc. of the Japan-France Seminar 1976 “Functional Analysis and Numerical Analysis”, Japan Society for the Promotion of Sciences, pp. 469–482 (1978).Google Scholar
  60. [60]
    L. Tartar, Estimations Fines des Coéicients Homogénéisés, Ennio de Giorgi colloquium, P. Krée ed., Pitman Research Notes in Math. 125, 168–187 (1985).Google Scholar
  61. [61]
    S. Vigdergauz, Effective elastic parameters of a plate with a regular system of equal-strength holes, Mech. Solids 21, 162–166 (1986).Google Scholar
  62. [62]
    V. Zhikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators, Springer, Berlin, (1995).Google Scholar
  63. [63]
    M. Zhou, G. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comp. Meth. App. Mech. Engrg. 89, 309–336 (1991).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • G. Allaire
    • 1
    • 2
  1. 1.DRN/ DMT/ SERMA, CEA SaclayGif sur YvetteFrance
  2. 2.University of Paris 6ParisFrance

Personalised recommendations