Aims, Scope, Basic Concepts and Methods of Topology Optimization

  • G. I. N. Rozvany
Part of the International Centre for Mechanical Sciences book series (CISM, volume 374)


Topology means the pattern of connectivity or spatial sequence of members or elements in a structure. Optimization of the topology is involved in two fundamental classes of problems, namely
  • layout optimization and

  • generalized (variable topology) shape optimization.


Topology Optimization Perforated Plate Layout Problem Topology Optimization Problem Optimal Layout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


R.1 Books

  1. Argyris, J.H. and Kelsey, S. 1960: Energy Theorems and Structural Analysis. Butter-work, London.CrossRefGoogle Scholar
  2. Bendsoe, M.P. 1991: Methods for the optimization of structural topology, shape and material. Rep. Math. Inst. Tech. Univ. Denmark, Lyngby, Denmark (also to be published as a book by Springer-Verlag).Google Scholar
  3. Prager, W. 1974: Introduction to Structural Optimization. (Course held at Int. Centre for Mech. Sci. Udine, CISM) 212. Springer-Verlag, Vienna.Google Scholar
  4. Rozvany, G.I.N. 1989: Structural Design via Optimality Criteria. Kluwer, Dordrecht.CrossRefzbMATHGoogle Scholar

R.2 Review Papers

  1. Bendsoe, M.P.; Ben-Tal, A. and Zowe, J. 1994: Optimization methods for truss geometry and topology design. Struct. Optim. 7, 141–159.CrossRefGoogle Scholar
  2. Prager, W. and Rozvany, G.I.N. 1977: Optimization of structural geometry. In: Bednarek, A.R. and Cesari, L. (Eds.) Dynamical Systems, pp. 265–293. Academic Press, New York.Google Scholar
  3. Rozvany, G.I.N. and Ong, T.G. 1986b: Optimal plastic design of plates, shells and shellgrids. In: Bevilacqua, L.; Feijdo, R. and Valid, R. (Eds.) Inelastic Behaviour of Plates and Shells (Proc. IUTAM Symp., Rio de Janeiro, 1985 ), pp. 357–384. Springer-Verlag, Berlin.Google Scholar

R.3 Research Papers, Doctoral Theses and Research Reports

  1. Allaire, G. and Kohn, R.V. 1993a: Explicit bounds on the elastic energy of a two-phase composite in two space dimensions. Q. Appl. Math. 51, 675–699.MathSciNetzbMATHGoogle Scholar
  2. Allaire, G. and Kohn, R.V. 1993b: Optimal bounds on the effective behaviour of a mixture of two well-ordered elastic materials. Q. Appl. Math. 51, 643–674.MathSciNetzbMATHGoogle Scholar
  3. Allaire, G. and Kohn, R.V. 1993c: Topology optimization and optimal shape design using homogenization. In: Bendsoe, M.P. and Mota Soares, C.A. (Eds.) Topology Design of Structures (Proc. NATO ARW, Sesimbra, Portugal, 1992 ), pp. 207–218. Kluwer, Dordrecht.Google Scholar
  4. Bendsoe, M.P. 1989: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202.CrossRefGoogle Scholar
  5. Bendsoe, M.P. and Haber, R.B. 1993: The Michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: an asymptotic study. Struct. Optim. 6, 263–267.CrossRefGoogle Scholar
  6. Bendsoe, M.P. and Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method. Comp. Meth. Appl. Mech. Eng. 71, 197–224.MathSciNetCrossRefGoogle Scholar
  7. Birker, T. 1996: New developments in structural optimization using optimality criteria. Doctoral Thesis, Essen University. Also: Series 18, No. 199, VDI-Verlag, Düsseldorf.Google Scholar
  8. Cheng, G.D. and Guo, X. 1997: e-relaxed approach in structural topology. Struct. Optim. 13 (in press).Google Scholar
  9. Cheng, K.-T. and Jiang, Z. 1992: Study on topology optimization with stress constraints. Eng. Optim. 20, 129–148.CrossRefGoogle Scholar
  10. Cox, H.L. 1958: The theory of design. Rep. Aeronautical Res. Council, No. 2037.Google Scholar
  11. Dorn, W.S.; Gomory, R. E. and Greenberg, H.J. 1964: Automatic design of optimal structures. J. de Mécanique 3, 25–52.Google Scholar
  12. Gibiansky, L.V. and Cherkaev, A.V. 1984: Design of composite plates of optimal rigidity. Rept. No. 914, A.F. Ioffe Physical Technical Institute, Academy of Sciences of the USSR, Leningrad (in Russian).Google Scholar
  13. Hegemier, G.A. and Prager, W. 1969: On Michell trusses. Int. J. Mech. Sci. 11, 209–215.CrossRefzbMATHGoogle Scholar
  14. Huang, N.C. 1971: On principle of stationary mutual complementary energy and its application to structural design. ZAMP 22, 608–620.CrossRefzbMATHGoogle Scholar
  15. Karolyi, G. and Rozvany, G.I.N. 1997: Exact analytical solutions for nonselfadjoint variable-topology shape optimization problems: perforated cantilever plates in plane stress subject to displacement constraints. Struct. Optim. 13 (in press).Google Scholar
  16. Kirsch, U. 1990: On singular topologies in structural design. Struct. Optim. 2, 133–142.CrossRefGoogle Scholar
  17. Kirsch, U. 1995: Layout optimization using reduction and expansion processes. In: Olhoff, N. and Rozvany, G.I.N. (Eds.) Proc. First World Congr. Struct. Multidisc. Optim. pp. 95–102. Pergamon, Oxford.Google Scholar
  18. Kohn, R.V. and Strang, G. 1986a: Optimal design and relaxation of variational problems, I, II, and III. Comm. Pure Appl. Math. 39, 113–137, 139–182, 353–377.Google Scholar
  19. Lewinski, T.; Zhou, M. and Rozvany, G.I.N. 1994: Extended exact solutions for least-weight truss layouts — Part I: cantilever with a horizontal axis of symmetry. Int. J. Mech. Sci. 36, 5, 375–398.CrossRefzbMATHGoogle Scholar
  20. Lowe, P.G. and Melchers, R.E. 1972–1973: On the theory of optimal constant thickness fibre-reinforced plates. I, II, III. Int. J. Mech. Sci. 14 311–324, 15 157–170, 15 711–726.Google Scholar
  21. Lurie, K.A. 1994: Direct relaxation of optimal layout problems for plates. JOTA 80, 93–116.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Lurie, K.A. 1995a: On direct relaxation of optimal material design problems for plates. WSSIAA 5, 271–296.MathSciNetGoogle Scholar
  23. Lurie, K.A. 1995b: An optimal plate. In: Olhoff, N.; Rozvany, G.I.N. (Eds.) Proc. First World Cong. Struct. Multidisc. Optim. pp. 169–176. Pergamon, Oxford.Google Scholar
  24. Lurie, K.A.; Cherkaev, A.V. and Fedorov, A.V. 1982: Regularization of optimal design problems for bars and plates. JOTA, 37, 499–522 (Part I); 37, 523–543 (Part II) and 42, 247–282 (Part I II ).Google Scholar
  25. Michell, A.G.M. 1904: The limits of economy of material in frame-structures. Phil. Mag. 8, 589–597.CrossRefzbMATHGoogle Scholar
  26. Morley, C.T. 1966: The minimum reinforcement of concrete slabs. Int. J. Mech. Sci. 8, 305–319.CrossRefGoogle Scholar
  27. Niordson, F.I. 1983a: Optimal design of elastic plates with constraint on the slope of the thickness function. Int. J. Solids Struct. 19, 141–151.CrossRefzbMATHGoogle Scholar
  28. Niordson, F.I. 1983b: Some new results regarding optimal design of elastic plates. In: Eschenauer, H.; Olhoff, N. (Eds.) Optimization Methods in Structural Design, pp. 380–286. Wissenschaftsverlag, Mannheim.Google Scholar
  29. Ong, T.G. 1987: Structural optimization via static-kinematic optimality criteria. Ph.D. Thesis, Monash University, Melbourne.Google Scholar
  30. Ong, T.G.; Rozvany, G.I.N. and Szeto, W.T. 1988: Least-weight design of perforated elastic plates for given compliance: non-zero Poisson’s ratio. Comp. Meth. Appl. Mech. Eng. 66, 301–322.CrossRefzbMATHGoogle Scholar
  31. Prager, W. 1978a: Nearly optimal design of trusses. Comp. Struct. 8, 451–454.CrossRefzbMATHGoogle Scholar
  32. Prager, W. 1978b: Optimal layout of trusses with a finite number of joints. J. Mech. Phys. Solids 26, 241–250.CrossRefGoogle Scholar
  33. Prager, W. and Shield, R.T. 1967: A general theory of optimal plastic design. J. Appl. Mech. 34, 1, 184–186.CrossRefzbMATHGoogle Scholar
  34. Rozvany, G.I.N. 1966: A rational approach to plate design. J. Amer. Conc. Inst. 63, 1077–1094.Google Scholar
  35. Rozvany, G.I.N. 1992: Optimal layout theory: analytical solutions for elastic structures with several deflection constraints and load conditions. Struct. Optim. 4, 247–249.CrossRefGoogle Scholar
  36. Rozvany, G.I.N. 1996: Difficulties in truss topology optimization with stress, local buckling and system buckling constraints. Struct. Optim. 11, 213–217.CrossRefGoogle Scholar
  37. Rozvany, G.I.N. and Birker, T. 1994: On singular topologies in exact layout optimization. Struct. Optim. 8, 228–235.CrossRefGoogle Scholar
  38. Rozvany, G.I.N.; Gerdes, D. and Gollub, W. 1996: Ein analytischer Computeralgorith-, mus zum Auffinden optimaler Tragstrukturen bei Beigebeanspruchung. Research Rep. No. 69. Civil Eng. Dept., Essen University.Google Scholar
  39. Rozvany, G.I.N. and Hill, R.H. 1978: A computer algorithm for deriving analytically and plotting optimal structural layout. Comp. Struct. 10, 295–300.CrossRefGoogle Scholar
  40. Rozvany, G.I.N.; Olhoff, N.; Bendsoe, M.P.; Ong, T.G. and Szeto, W.T. 1985: Least-weight design of perforated elastic plates. DCAMM Report No. 306. Techn. Univ. Denmark, Lyngby.Google Scholar
  41. Rozvany, G.I.N.; Olhoff, N.; Bendsoe, M.P.; Ong, T.G.; Sandler, R. and Szeto, W.T. 1987: Least-weight design of perforated elastic plates I, II. Int. J. Solids Struct. 23, 521–536, 537–550.Google Scholar
  42. Rozvany, G.I.N. and Prager, W. 1976: Optimal design of partially discretized grillages. J. Mech. Phys. Solids 24, 125–136.CrossRefzbMATHGoogle Scholar
  43. Rozvany, G.I.N. and Sobieszczanski-Sobieski, J. 1992: New optimality criteria methods: forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections. Struct. Optim. 4, 244–246.CrossRefGoogle Scholar
  44. Rozvany, G.I.N. and Zhou, M. 1991a: Applications of the COC method in layout optimization. In: Eschenauer, H.; Matteck, C. and Olhoff, N. (Eds.) Proc. Int. Conf. “Engineering Optimization in Design Processes” (Karlsruhe 1990 ), pp. 59–70. Springer-Verlag, Berlin.Google Scholar
  45. Rozvany, G.I.N. and Zhou, M. 1996: Advances in overcoming computational pitfalls in topology optimization. Proc. 6th AIAA/NASA/ISSMO Symp. on Multidisc. Anal. Optim. A. I. A.A., Reston, VA.Google Scholar
  46. Rozvany, G.I.N.; Zhou, M. and Birker, T. 1993: Why multiload topology designs based on orthogonal microstructures are in general nonoptimal. Struct. Optim. 6, 200–204.CrossRefGoogle Scholar
  47. Shield, R.T. and Prager, W. 1970: Optimum structural design for given deflection. ZAMP 21, 513–523.CrossRefzbMATHGoogle Scholar
  48. Sigmund, O.; Zhou, M. and Rozvany, G.I.N. 1993: Layout optimization of large FE-systems by new optimality criteria methods: applications to beam systems. In: Haug, E.J. (Ed.) Proc. NATO ASI Concurrent Engineering Tools and Technologies for Mechanical System Design (Iowa, 1992 ). Springer-Verlag, Berlin.Google Scholar
  49. Sved, G. 1954: The minimum weight of certain redundant structures. Austral. J. Appl. Sci. 5, 1–8.Google Scholar
  50. Szeto, W.T. 1989: Microstructure studies and structural optimization. Ph.D. Thesis, Monash University, Melbourne.Google Scholar
  51. Vigdergauz, S. 1986: Effective elastic parameters of a plate with a regular system of equal-strength holes. Mechanics of Solids (transl. of Mekh. Tver. Tela.) 21, 162–166.Google Scholar
  52. Zhou, M. 1996: Difficulties in truss topology optimization with stress and local buckling constraints. Struct. Optim. 11, 134–136.CrossRefGoogle Scholar
  53. Zhou, M. and Rozvany, G.I.N. 1992/1993: DCOC: an optimality criteria method for large systems. Part I: theory. Part II: algorithm. Struct. Optim. 5 12–25; 6 250–262.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • G. I. N. Rozvany
    • 1
  1. 1.Essen UniversityEssenGermany

Personalised recommendations