Skip to main content

Engineering Turbulence Models and their Development, with Emphasis on Explicit Algebraic Reynolds Stress Models

  • Chapter
Book cover Theories of Turbulence

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 442))

Abstract

Single-point turbulence models will be discussed from a somewhat analytical point of view. The lowest level of modelling considered here is that of eddy-viscosity-based two-equation models, but particular attention is given to explicit algebraic Reynolds stress models (and explicit algebraic scalar flux models). Some new trends in models based directly on the Reynolds stress transport equations are also discussed.

The author wants to thank Dr Stefan Wallin for various valuable contributions, and Gustaf Mårtensson and professor Fritz Busse for many useful comments on the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adumitroaie, V., Taulbee, D.B. & Givi, P. (1997). Explicit algebraic scalar flux models for turbulent reacting flows. A. i.ch.e.J. 43: 1935–2147.

    Article  Google Scholar 

  • Alvelius, K. & Johansson, A.V. (1999). Direct numerical simulation of rotating channel flow at various Reynolds numbers and rotation numbers. In PhD thesis of K. Alvelius, Dept. of Mechanics, KTH, Stockholm, Sweden

    Google Scholar 

  • Aupoix, B., Cousteix, J. & Liandrat, J. (1989). MIS: A way to derive the dissipation equation Turbulent Shear Flow vol. 6 (ed. J.-C. André ), Springer

    Google Scholar 

  • Batchelor, G.K. (1953). The theory of homogeneous turbulence. Cambridge University Press.

    Google Scholar 

  • Champagne, F.H., Harris, V.G. & Corrsin, S. (1970). Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41: 81–139.

    Article  ADS  Google Scholar 

  • Chasnov, J.R. (1994). Similarity states of passive scalar transport in isotropic turbulence. Phys. Fluids 6: 1036.

    Article  MATH  ADS  Google Scholar 

  • Chou, P.Y. (1945). On velocity correlations and the solutions of the equations of turbulent motion. Quart. of Applied Math. 3: 38–54.

    MATH  Google Scholar 

  • Comte-Bellot, G. & Corrsin, S. (1966). The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25: 657–682.

    Article  ADS  Google Scholar 

  • Daly, B.J. & Harlow, F.H. (1970). Transport equations in turbulence. Phys. Fluids 13:2634–2649.

    Article  ADS  Google Scholar 

  • Durbin, P.A. (1996). On the k–e stagnation point anomaly. Int. J. Heat and Fluid Flow 17: 89–90.

    Article  Google Scholar 

  • Gatski, T.B. & Speziale, C.G. (1993). On explicit algebraic Reynolds stress models for complex turbulent flows. J. Fluid Mech. 254: 59–78.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Gibson, M.M. & Launder, B.E. (1978). Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86: 491–511.

    Article  MATH  ADS  Google Scholar 

  • Girimaji, S.S. (1995). Fully-explicit and self-consistent algebraic Reynolds stress model. ICASE Report No. 95–82.

    Google Scholar 

  • Girimaji, S.S. (1996). Improved algebraic Reynolds stress model for engineering flows. In Engineering Turbulence Modelling and Experiments 3 pp 121–129. Eds W. Rodi and G. Bergeles. Elsevier. Science B. V.

    Google Scholar 

  • Girimaji, S.S. (1997). A Galilean invariant explicit Reynolds stress model for turbulent curved flows. Phys. Fluids 9: 1067–1077.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Girimaji, S.S. & Balachandar, S. (1997). Analysis and modeling of buoyancy-generated turbulence using numerical data. Int. J. Heat and Mass Transfer 41: 915–929.

    Article  Google Scholar 

  • Hallbäck, M., Groth, J. & Johansson, A.V. (1990). An algebraic model for nonisotropic turbulent dissipation rate in Reynolds stress closures. Phys Fluids A 2: 1859–1866.

    Article  MATH  ADS  Google Scholar 

  • Högström, C.M., Wallin, S. & Johansson, A.V. (2001). Passive scalar flux modelling for CFD. In Proceedings of Turbulence and Shear Flow Phenomena II, Stockholm, June 27–29, 2001, II: 383–388.

    Google Scholar 

  • Imao, S., Itoh, M. & Harada, T. (1996). Turbulent characteristics of the flow in an axially rotating pipe. Int. J. Heat and Fluid Flow 17: 444–451.

    Article  Google Scholar 

  • Johansson, A.V. & Burden, A.D. (1999). An introduction to turbulence modelling. Chapter 4 in Transition, Turbulence and Combustion Modelling, ERCOFTAC Series vol. 6, Kluwer. pp 159–242.

    Google Scholar 

  • Johansson, A.V. & Hallbäck, M. (1994). Modelling of rapid pressure-strain rate in Reynolds tress closures. J. Fluid Mech. 269: 143–168

    Article  MATH  ADS  Google Scholar 

  • Johansson, A.V. & Hallbäck, M. (1994). Modelling of rapid pressure-strain rate in Reynolds tress closures. J. Fluid Mech. 290: 405 (1995).

    Google Scholar 

  • Johansson, A.V. & Wallin, S. (1996). A new explicit algebraic Reynolds stress model. In Proc. Sixth European Turbulence Conference, Lausanne, July 1996, Ed. P. Monkewitz, 31–34.

    Google Scholar 

  • Johansson, A.V. & Wikström, P.M. (2000). DNS and modelling of passive scalar transport in turbulent channel flow with a focus on scalar dissipation rate modelling. Flow, Turbulence and Combustion 63: 223–245.

    Article  MATH  Google Scholar 

  • Jongen, T., Mompean, G. & Gatski, T.G. (1998). Accounting for Reynolds stress and dissipation rate anisotropies in inertial and noninertial frames. Phys. Fluids 10: 674–684.

    Article  ADS  Google Scholar 

  • Kim, J. (1989). Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177: 133–166.

    Article  ADS  Google Scholar 

  • Kim, J., Moin, P. & Moser, R. (1987). On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205: 421–451.

    Article  Google Scholar 

  • Kolmogorov, A.N. (1942). Equations of turbulent motion of an incompressible fluid. Izvestia Academy of Sciences, USSR; Physics 6: 56–58.

    Google Scholar 

  • Komminaho, J. & Skote, M. (2001). Reynolds stress budgets in Couette and boundary layer flows. Submitted to Flow, Turbulence and Combustion.

    Google Scholar 

  • Kristoffersen, R. & Andersson, H. (1993). Direct simulation of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech. 256: 163–197.

    Article  MATH  ADS  Google Scholar 

  • Lam, C.K.G. & Bremhorst, K.A. (1981). Modified form of K-e model for predicting wall turbulence. ASME, J. Fluids Engineering 103: 456–460.

    Article  ADS  Google Scholar 

  • Launder, B.E., Reece, G.J. & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 41: 537–566.

    Article  ADS  Google Scholar 

  • Launder, B.E. & Spalding, D.B. (1972). Mathematical models of turbulence. Academic Press.

    Google Scholar 

  • Launder, B.E., Tselepidakis, D.P. & Younis, B.A. (1987). A second-moment closure study of rotating channel flow. J. Fluid Mech. 183: 63–75.

    Article  MATH  ADS  Google Scholar 

  • Lindberg, P.A. (1994). Near-wall turbulence models for 3D boundary layers. Appl. Sci. Res. 53: 139–162.

    Article  MATH  ADS  Google Scholar 

  • Lumley, J.L. (1978). Computational modeling of turbulent flows. Adv. Appl. Mech. 18: 123–177.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Menter, F.R. (1992). Improved Two-Equation k - w Turbulence Model for Aerodynamic Flows. NASA TM-103975

    Google Scholar 

  • Menter, F.R. (1993). Zonal Two Equation k - w Turbulence Models for Aerodynamic Flows. AIAA 93–2906

    Google Scholar 

  • Mohammadi, B. & Pironneau, O. (1994). Analysis of the K - r model Wiley/Masson.

    Google Scholar 

  • Naot, D., Shavit, A. & Wolfstein, M. (1973). Two-point correlation model and the redistribution of Reynolds stresses, Phys. Fluids 16: 738–743.

    Article  MATH  ADS  Google Scholar 

  • Piquet, J. (1999). Turbulent flows, models and physics Springer.

    Google Scholar 

  • Pope, S.B. (1975). A more general effective-viscosity hypothesis. J. Fluid Mech. 72: 331–340.

    Article  MATH  ADS  Google Scholar 

  • Poroseva, S.V., Kassinos,S.C., Langer, C.A. & Reynolds, W.C. (2001). Simulation of turbulent flow in a rotating pipe using the structure-based model. In Proceedings of Turbulence and Shear Flow Phenomena II, Stockholm, June 27–29, 2001, II: 223–228.

    Google Scholar 

  • Reynolds, W.C. (1976). Computation of turbulent flows. Ann. Rev. Fluid Mech. 8: 183–208.

    Article  ADS  Google Scholar 

  • Rodi, W. (1976). A new algebraic relation for calculating the Reynolds stresses. Z. angew. Math. Mech. 56: T219–221.

    Article  MATH  Google Scholar 

  • Rodi, W & Mansour, N.N. (1993). Low Reynolds number K-c modelling with the aid of direct simulation data. J. Fluid Mech. 250: 509–529.

    Article  MATH  ADS  Google Scholar 

  • Rotta, J (1951). Statistische theorie nichthomogener turbulenz I. Zeitschrift für Physik 129: 547–572.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • R. Rubinstein, C.L. Rumsey, M.D. Salas, and J.L. Thomas, editors (2001). Turbulence modelling workshop ICASE Interim Report No. 37 NASA/CR-2001–210841.

    Google Scholar 

  • Saffman, P.G. (1970). A model for inhomogeneous turbulent flow. Proc. Roy. Soc. London A 317: 417–433.

    Article  MATH  ADS  Google Scholar 

  • Saffman, P.G. (1967). The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27: 581–593.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Shih, T.-H. & Lumley, J.L. (1986). Second-order modeling of near-wall turbulence. Phys. Fluids 29: 971–975.

    Google Scholar 

  • Shih, T.-H., Reynolds, W.C. & Mansour, N.N. (1990). A spectrum model for weakly anisotropic turbulence. Phys. Fluids A 2: 1500–1502.

    Article  ADS  Google Scholar 

  • Shih, T.H., Zhu, J. & Lumley, J.L. (1992). A Realizable Reynolds Stress Algebraic Equation Model NASA TM 105993, ICOMP-92–27, CMOTT-92–14.

    Google Scholar 

  • Sjögren, T.I.. (1997). Development and Validation of Turbulence Models Through Experiment and Computation. Doctoral thesis, Dept. of Mechanics, KTH, Stockholm, Sweden.

    Google Scholar 

  • Sjögren, T.I.A & Johansson, A.V. (1998). Measurement and modelling of homogeneous axisymmetric turbulence. J. Fluid Mech. 374: 59–90.

    Article  ADS  Google Scholar 

  • Sjögren, T.I.A & Johansson, A.V. (2000). Development and calibration of algebraic non-linear models for terms in the Reynolds stress transport equations. Phys. Fluids 12: 1554–1572.

    Article  MATH  ADS  Google Scholar 

  • So, R.M.C., Zhang, H.S. & Speziale, C.G. (1991). Near-wall modeling of the dissipation rate equation. AIAA J. 29: 2069–2076.

    Article  MATH  ADS  Google Scholar 

  • Spencer, A.J.M. & Rivlin, R.S. (1959). The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Rat. Mech. Anal. 2: 309–336.

    Article  MathSciNet  MATH  Google Scholar 

  • Speziale, C.G. (1991). Analytical methods for the development of Reynolds-stress closures in turbulence. Ann. Rev. Fluid Mech. 23: 107–157.

    Article  MathSciNet  ADS  Google Scholar 

  • Speziale, C.G. Abid, R. & Anderson, E.C. (1992). Critical evaluation of two-equation models for near-wall turbulence. AIAA J. 30: 324–331.

    Article  MATH  ADS  Google Scholar 

  • Speziale, C.G., Sarkar, S. & Gatski, T.B. (1991). Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227: 245–272.

    Article  MATH  ADS  Google Scholar 

  • Speziale, C.G. & Xu, X.-H. (1996). Towards the development of second-order closure models for nonequilibrium turbulent flows. Int. J. Heat and Fluid Flow 17: 238–244.

    Article  Google Scholar 

  • Taulbee, D.B. (1992). An improved algebraic Reynolds stress model and corresponding nonlinear stress model. Phys. Fluids 4: 2555–2561.

    Article  MATH  ADS  Google Scholar 

  • Taulbee, D.B., Sonnenmeier, J.R. & Wall, K.M. (1994). Stress relation for three-dimensional turbulent flows. Phys. Fluids 6: 1399–1401.

    Article  MATH  ADS  Google Scholar 

  • Tavoularis, S. & Corrsin, S. (1981). Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part I. J. Fluid Mech. 104: 311–347.

    Article  ADS  Google Scholar 

  • Wallin, S. & Johansson, A.V. (2000). An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403: 89–132.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Wallin, S. & Johansson, A.V. (2001). Modelling of streamline curvature effects on turbulence in explicit algebraic Reynolds stress turbulence models. In Proceedings of Turbulence and Shear Flow Phenomena II, Stockholm, June 27–29, 2001, 11:223–228. Also to appear in revised form in Int. J. Heat and Fluid Flow.

    Google Scholar 

  • Wikström, P.M., Wallin, S. & Johansson, A.V. (2000). Derivation and investigation of a new explicit algebraic model for the passive scalar flux. Phys. Fluids 12: 688–702.

    Article  MATH  ADS  Google Scholar 

  • Wilcox, D.C. (1994). Turbulence modeling for CFD DCW Industries Inc. ISBN 0–9636051–0–0, USA 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Johansson, A. (2002). Engineering Turbulence Models and their Development, with Emphasis on Explicit Algebraic Reynolds Stress Models. In: Oberlack, M., Busse, F.H. (eds) Theories of Turbulence. International Centre for Mechanical Sciences, vol 442. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2564-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2564-9_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83694-1

  • Online ISBN: 978-3-7091-2564-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics