Advertisement

From Rapid Distortion Theory to Statistical Closure Theories of Anisotropic Turbulence

  • Claude Cambon
Part of the International Centre for Mechanical Sciences book series (CISM, volume 442)

Abstract

An overview of non-local theories and models is given, ranging from linear to nonlinear. The background principles are presented and illustrated mainly for incompressible, homogeneous, anisotropic turbulence. In that case, which includes effects of mean gradients and body forces and related structuring effects, the complete rapid distortion theory (RDT) solution is shown to be a building block for constructing a full nonlinear closure theory. Firstly, a general overview of the closure problem is presented, which accounts for both the nonlinear problem and the non-local problem. A classical spectral description is introduced for the fluctuating flow and its multi-point correlations. Applications to stably-stratified and rotating turbulence are discussed. In this particular context, homogeneous turbulence is revisited in the presence of dispersive waves, taking advantage of the close relationship between recent theories of weakly nonlinear interactions, or ‘wave-turbulence’, and classical two-point closure theories. Applications to weak turbulence in compressible flows are touched upon. Extensions of the frontiers of rapid distortion theory (RDT) and multi-point closures are discussed, especially developments leading towards inhomogeneous turbulence. Recent works related to zonal RDT and stability analyses for wavepacket disturbances to non-parallel rotational base flows are presented.

Keywords

Direct Numerical Simulation Homogeneous Turbulence Pure Rotation Reynolds Stress Tensor Inertial Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardina, J., Ferziger, J. M., Rogallo, R. S. (1985) Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154: 321–326.CrossRefADSGoogle Scholar
  2. Batchelor, G. K. (1953) The theory of homogeneous turbulence. Cambridge University Press.Google Scholar
  3. Batchelor, G. K. and Proudman I. (1954) The effect of rapid distortion in a fluid in turbulent motion. Q. J. Mech. Appl. Maths, 7–83.Google Scholar
  4. Bayly, B. J. (1986) Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57: 2160.MathSciNetCrossRefADSGoogle Scholar
  5. Bayly, B. J. Holm, D. D. and Lifschitz. (1996) Three-dimensional stability of elliptical vortex columns in external strain flows. Phil. Trans. R. Soc. London A 354: 895–926.MathSciNetCrossRefMATHADSGoogle Scholar
  6. Benney, D. J., Saffman, P. G. (1966) Nonlinear interactions of random waves in a dispersive medium In. Proc. R. Soc. London, Ser. A 289, 301–320.CrossRefADSGoogle Scholar
  7. Benzi, R. (2001) Chapter 1 of the present bookGoogle Scholar
  8. Beronov, K. and Kaneda, Y. (2001) RDT and long-time universality in uniformly sheared turbulence. Part 1: velocity correlations. J. Fluid Mech., submitted.Google Scholar
  9. Burden, A. D. (1991) Towards an EDQNM closure for inhomogeneous turbulence. in Johansson, A. V. and Alfredson, P. H., eds. Advances in Turbulence III. Springer Verlag. Berlin 387.CrossRefGoogle Scholar
  10. Busse, F. (2001) Present CISM CourseGoogle Scholar
  11. Caillol, P. and Zeitlin, W. (2000) Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves. Dyn. Atm. Oceans 32: 81–112.CrossRefADSGoogle Scholar
  12. Cambon, C. (1982) Etude spectrale d’un champ turbulent incompressible soumis à des effets couplés de déformation et rotation imposés extérieurement. Thèse de Doctorat d’Etat, Université Lyon I, France.Google Scholar
  13. Cambon, C. (2001) Turbulence and vortex structures in rotating and stratified flows. Eur. J. Mech. B (fluids) 20: 489–510.MathSciNetCrossRefMATHGoogle Scholar
  14. Cambon C., Jacquin L. and Lubrano J-L. (1992) Towards a new Reynolds stress model for rotating turbulent flows. Phys. Fluids A4: 812–824.CrossRefMATHADSGoogle Scholar
  15. Cambon C., Mansour N. N. and Godeferd, F. S. (1997) Energy transfer in rotating turbulence. J. Fluid Mech. 337: 303–332.MathSciNetCrossRefMATHADSGoogle Scholar
  16. Cambon C., Mao Y. and Jeandel D. (1992) On the application of time dependent scaling to the modelling of turbulence undergoing compression. Eur. J. Mech, B/Fluids 6: 683–703.Google Scholar
  17. Cambon, C. and Scott, J. F. (1999) Linear and nonlinear models of anisotropie turbulence. Ann. Rev. Fluid Mech. 31: 1–53.MathSciNetCrossRefADSGoogle Scholar
  18. Carnevale, G. F. and Frederiksen, J. S. (1983) A statistical dynamical theory of strongly nonlinear internal gravity waves. Geophys. Astrophys. Fluid Dyn. 20, 8: 131–164.MathSciNetGoogle Scholar
  19. Clark, T., T., and Zemach, C. (1995) A spectral model applied to homogeneous turbulence. Phys. Fluids? (7): 1674–1694.Google Scholar
  20. Craya, A. (1958) Contribution à l’analyse de la turbulence associée à des vitesses moyennes. P.S.T. n ° 345. Ministère de l’air. FranceGoogle Scholar
  21. Eckhoff, K. S. and Storesletten, L. (1978) A note on the stability of steady inviscid helical gas flows. J. Fluid Mech. 89: 401.CrossRefMATHADSGoogle Scholar
  22. Fabre, D., Jacquin, L., and Sesterhenn, J. (2001) Linear interaction of a cylindrical entropy spot with a shock wave. Phys. Fluidl 3, 8: 1–20.Google Scholar
  23. Fauchet, G., Shao, L., Wunenberger, R. and Bertoglio, J. P. (1997) An improved two-point closure for weakly compressible turbulence. 11-th Symp. Turb. Shear Flow, Grenoble, Sept. 8–10.Google Scholar
  24. Galmiche, M. (1999) Thèse de Doctorat, Université de Toulouse, France.Google Scholar
  25. Galtier, S., Nazarenko, S., Newell, A. C. and Pouquet, A. (2000) A weak turbulence theory for incompressible MHD. J. Plasma Phys. 63: 447–488.CrossRefADSGoogle Scholar
  26. Gence J.-N. and Mathieu J. (1979) On the application of successive plane strains to grid-generated turbulence. J. Fluid Mech. 93: 501–513.CrossRefADSGoogle Scholar
  27. Godeferd F S. and Cambon C. (1994) Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluid 6: 2084–2100.MathSciNetCrossRefMATHADSGoogle Scholar
  28. Godeferd, F. S., Cambon, C., and Leblanc, S. (2001) Zonal approach to centrifugal, elliptic and hyperbolic instabilities in Suart vortices with external rotation. J. Fluid Mech. 449: 1–37.MathSciNetCrossRefMATHADSGoogle Scholar
  29. Godeferd, F. S., Cambon, C. and Scott, J. F. (2001) Report on the workshop: Two-point closures and their application. J. Fluid Mech. 436: 393–407.MATHADSGoogle Scholar
  30. Godeferd, E S., and Lollini, L. (1999) Direct numerical simulations of turbulence with confinment and rotation. J. Fluid Mech. 393: 257–308.CrossRefMATHADSGoogle Scholar
  31. Goldstein M. E. (1978) Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89: 431.ADSGoogle Scholar
  32. Greenspan H. P. (1968) The theory of rotating fluids. Cambridge University Press.Google Scholar
  33. Hadzic, I., Hanjalic, K. and Laurence, D. (2001) Modeling the response of turbulence subjected to cyclic irrotational strain. Phys. Fluidl 3(6): 1739–1747.Google Scholar
  34. Hopf, E. (1952) Statistical hydrodynamics and functional calculus J. Rat. Mech. Anal. 1: 87.MathSciNetMATHGoogle Scholar
  35. Hunt J. C. R. and Carruthers D. J. (1990) Rapid distortion theory and the `problems’ of turbulence. J. Fluid Mech. 212: 497–532.MathSciNetCrossRefMATHADSGoogle Scholar
  36. Jacquin L., Leuchter O., Cambon C., Mathieu J. (1990) Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220: 1–52.CrossRefMATHADSGoogle Scholar
  37. Johansson, A. V. (2002) Chapter 5 of the present bookGoogle Scholar
  38. Kaneda, Y. (1981) Renormalized expansions in the theory of turbulence with the use of the Lagrangian position function. J. Fluid Mech. 107: 131–145.CrossRefADSGoogle Scholar
  39. Kassinos, S. C., Reynolds, W. C. and Rogers, M. M. (2000) One-point turbulence structure tensors. J. Fluid Mech. 428: 213–248.MathSciNetCrossRefADSGoogle Scholar
  40. Kovasznay, L. S. G. (1953) Turbulence in supersonic flow. J. Aeronaut. Sci. 20: 657–682.CrossRefMATHGoogle Scholar
  41. Kraichnan R. H. (1959) The structure of turbulence at very high Reynolds numbers. J. Fluid Mech. 5: 497–543.MathSciNetCrossRefMATHADSGoogle Scholar
  42. Leblanc, S. and Cambon, C. 1997 On the three-dimensional instabilities of plane flows subjected to Coriolis force. Phys. Fluids 9 (5): 1307–1316.MathSciNetCrossRefMATHADSGoogle Scholar
  43. Lee, J. M., Kim, J. and Moin P. (1990) Structure of turbulence at high shear rate. J. Fluid Mech. 216: 561–583.CrossRefADSGoogle Scholar
  44. Lifschitz, A. and Hameiri, E. (1991) Local stability conditions in fluid dynamics. Phys. Fluids A 3: 2644–2641.MathSciNetCrossRefMATHADSGoogle Scholar
  45. Lighthill, M J. (1978) Waves in Fluids. Cambridge University Press.Google Scholar
  46. Lumley J. L. (1967) The structure of inhomogeneous turbulence flows. In Yaglom, A M, Tatarsky, V I, eds., Atmospheric Turbulence and Radio Wave Propagation. Moscow: NAUCA. 166–167.Google Scholar
  47. Lundgren, T. S. (1967) Distribution function in the statistical theory of turbulence. Phys. Fluids 10 (5): 969–975.CrossRefADSGoogle Scholar
  48. Mathieu, J. and Scott, J. F. (2000) Turbulent Flows: An Introduction Cambridge University Press.Google Scholar
  49. Mc Ewan, A. D. (1970) Inertial oscillations in a rotating fluid cylinder. J. Fluid Mech. 40: 603–639.CrossRefADSGoogle Scholar
  50. Mc Comb, W. D. (1974) A local energy transfer theory of isotropic turbulence. J. Phys. A7 (5): 632.ADSGoogle Scholar
  51. Mc Comb, W. D. (2002) Chapter 3 of the present bookGoogle Scholar
  52. Moffat, H. K. (1967) The interaction of turbulence with a strong shear. In Yaglom, A M, Tatarsky, V I, eds., Atmospheric Turbulence and Radio Wave Propagation. Moscow: NAUCA.Google Scholar
  53. Monin, A. S. and Yaglom A. M. (1975) Statistical Fluid Mechanics I. Cambridge, MA. MIT Press.Google Scholar
  54. Mowbray, D. E. and Rarity, B. S. H. (1967) A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech. 28: 1–16.CrossRefADSGoogle Scholar
  55. Nazarenko, S., Kevlahan, N. N., & Dubrulle, B. (1999) A WKB theory for rapid distortion of inhomogeneous turbulence. J. Fluid Mech. 390: 325.MathSciNetCrossRefMATHADSGoogle Scholar
  56. Oberlack, M. (2002) Chapter 6 of the present bookGoogle Scholar
  57. Orszag, S. A. (1970) Analytical theories of turbulence. J.Fluid Mech. 41: 363–386.CrossRefMATHADSGoogle Scholar
  58. Ribner, H. S. (1954) Convection of a pattern of vorticity through a shock wave. NACA REPORT, No 1164.Google Scholar
  59. Riley, J. J., Metcalfe, R. W. and Weisman, M. A. (1981) DNS of homogeneous turbulence in density stratified fluids. In B. J. West, Ed., AIP, New York. Proc. AIP conf. on nonlinear properties of internal waves 79–112.Google Scholar
  60. Rogers M. M. (1991) The structure of a passive scalar field with a uniform gradient in rapidly sheared homogeneous turbulent flow. Phys. FluidsA, 3: 144–154.CrossRefMATHADSGoogle Scholar
  61. Salhi A., Cambon C. and Speziale, C. G. (1997) Linear stability analysis of plane quadratic flows in a rotating frame. Phys. Fluids 9 (8): 2300–2309.MathSciNetCrossRefMATHADSGoogle Scholar
  62. Sarkar S. (1995) The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech 282: 163–286.CrossRefMATHADSGoogle Scholar
  63. Simone, A., Coleman G. N. and Cambon C. (1997) The effect of compressibility on turbulent shear flow: a RDT and DNS study. J. Fluid Mech. 330: 307–338.CrossRefMATHADSGoogle Scholar
  64. Sipp, D., Lauga, E. and Jacquin, L. (1999) Vortices in rotating systems: Centrifugal, elliptic and hyperbolic type instabilities. Phys. Fluids 11: 3716–3728.MathSciNetCrossRefMATHADSGoogle Scholar
  65. Smith, L. M. and Waleffe, F. (2002) Generation of slow, large scales in forced rotating, stratified turbulence. J. Fluid Mech. 451: 145–168.MATHADSGoogle Scholar
  66. Staquet, C. and Sommeria, J. (2002) Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34: 559–593.MathSciNetCrossRefADSGoogle Scholar
  67. Touil, H., Bertoglio, J-P., and Parpais, S. (2000) A spectral closure applied to anisotropie inhomogeneous turbulence. in Dopazo, C., ed. Advances in Turbulence VIII. CIMNE. Spain 689.Google Scholar
  68. Townsend, A. A. (1956) The structure of turbulent shear flow. Revised version 1976. Cambridge University Press.MATHGoogle Scholar
  69. Turner, L. (1999) Macroscopic structures of inhomogeneous, Navier-Stokes turbulence. Phys. Fluids11: 2367–2380.Google Scholar
  70. Zakharov, V. E., L’vov, V. S. and Falkowich G. (1992) Kolmogoroff spectra of turbulence I. Wave turbulence. Springer series in nonlinear dynamics. Springer VerlagCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Claude Cambon
    • 1
  1. 1.Laboratoire de Mécanique des Fluides et d’Acoustique U.M.R. CNRS 5509Ecole Centrale de LyonEcully CedexFrance

Personalised recommendations