Advertisement

Intermittency in Turbulence

  • Roberto Benzi
  • Luca Biferale
Part of the International Centre for Mechanical Sciences book series (CISM, volume 442)

Abstract

We present a detailed review of recent developments in the statistical approach to fully developed turbulence. We address both ideal situations such as “homogeneous and isotropic turbulence” as well as problems of real anisotropic and wall bounded flows. We also discuss a set of theoretical questions connected to the calculation of anomalous exponents in the Navier-Stokes equations and in a class of shell models for the turbulent energy cascade.

Keywords

Structure Function Shell Model Eddy Viscosity Fusion Rule Isotropic Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, ( Pergamon Press, New York, 1997 )Google Scholar
  2. G. K. Batchelor, The Theory of Homogeneous Turbulence, (Cambridge University Press, 1971 )Google Scholar
  3. A. S. Monin and A. M. Yaglom, Stat. Fluid Mechanics, ( MIT Press, Cambridge, 1975 )Google Scholar
  4. U. Frisch, Turbulence, ( Cambridge University Press, Cambridge, 1995 )MATHGoogle Scholar
  5. T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, Dynamical System Approach to Turbulence, ( Cambridge University Press, Cambridge, 1997 )Google Scholar
  6. J. O. Hinze, Turbulence, (McGraw-Hill, 1959 )Google Scholar
  7. L. F. Richardson, Weather Prediction by Numerical Process, Cambridge U.P., Cambridge (1922)MATHGoogle Scholar
  8. A. N. Kolmogorov, CR. Acad. Sci. USSR 30, 301 (1941);Google Scholar
  9. A. N. Kolmogorov, CR. Acad. Sci. USSR 31, 538 (1941);MATHGoogle Scholar
  10. A. N. Kolmogorov, CR. Acad. Sci. USSR 32, 16 (1941)MATHGoogle Scholar
  11. U. Frisch, Turbulence, Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  12. T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, Dynamical System Approach to Turbulence, Cambridge University Press, Cambridge, 1997.Google Scholar
  13. A. N. Kolmogorov, “ A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number”. J. Fluid Mech. 62, 82 (1962).MathSciNetCrossRefADSGoogle Scholar
  14. G. Parisi and U. Frisch, “On the singularity structure of fully developed turbulence” in Turbulence and predictability of geophysical fluid dynamics, ed. by M. Ghil, R. Benzi and G. Parisi, North-Holland, Amsterdam, 1985, p. 84.Google Scholar
  15. R. Benzi, G. Paladin, G. Parisi and A. Vulpiani, “On the multifractal nature of fully developed turbulence and chaotic systems”. J. Phys. A 17, 3521 (1984).MathSciNetCrossRefADSGoogle Scholar
  16. R. Benzi, L. Biferale, G. Paladin, M. Vergassola and A. Vulpiani, Multifractality in the statistics of the velocity gradients in turbulence. Phys. Rev. Lett. 67, 2299 (1991).CrossRefADSGoogle Scholar
  17. U. Frisch and M. Vergassola, Intermediate dissipative range in turbulence. Europhys. Lett. 14, 439 (1991).CrossRefADSGoogle Scholar
  18. C. M. Meneveau and K. R. Sreenivasan, The multifractal spectrum of the dissipation field in turbulent flows. Nucl. Phys. B Proc. Suppl. 2, 49 (1987).CrossRefADSGoogle Scholar
  19. M.H. Jensen, G. Paladin and A. Vulpiani, Intermittency in a cascade model for 3-dimensional turbulence. Phys. Rev. A 43, 798–805 (1991).CrossRefADSGoogle Scholar
  20. L. Biferale, A. Lambert, R. Lima and G. Paladin, Transition to chaos in a shell model of turbulence. Physica D 80, 105 (1995).CrossRefMATHADSGoogle Scholar
  21. L. Kadanoff, D. Lohse, J. Wang, R. Benzi, Scaling and dissipation in the GOY shell model. Phys. Fluids 7, 617 (1995).MathSciNetCrossRefMATHADSGoogle Scholar
  22. V. L’vov, E. Podivilov, A. Pomyalov, I. Procaccia and D. Vandembroucq, Improved shell model of turbulence. Phys. Rev. E. 58, 1811 (1998).MathSciNetCrossRefADSGoogle Scholar
  23. R. Benzi, L. Biferale, A. Crisanti, G. Paladin, M. Vergassola, A. Vulpiani; A random process for the construction of multiaffine fields. Physica D 65, 352, (1993).CrossRefMATHADSGoogle Scholar
  24. R. Benzi, L. Biferale, R. Tripiccione and E. Trovatore; (1+1)-dimensional turbulence. Phys. Fluids 9, 2355, (1996).MathSciNetCrossRefADSGoogle Scholar
  25. V.S. L’vov and I. Procaccia; Towards a nonperturbative theory of hydrodynamic turbulence: Fusion rules, exact bridge relations, and anomalous viscous scaling functions. Phys. Rev. E 54 6268 (1996).CrossRefADSGoogle Scholar
  26. R. Benzi, L. Biferale and F. Toschi. Multiscale correlation functions in turbulence. Phys. Rev. Lett. 80, 3244, (1998).CrossRefADSGoogle Scholar
  27. L. Biferale, G. Boffetta, A. Celani, F. Toschi; Multi-time Multi-scale correlation function in turbulence and in turbulent models. Physica D 127, 187, 1999.MathSciNetCrossRefMATHADSGoogle Scholar
  28. K. Gawdezki and A. Kupiainen, Anomalous scaling of the passive scalar. Phys. Rev. Lett. 75, 3834 (1995).CrossRefADSGoogle Scholar
  29. R.H. Kraichnan, Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. 72, 1016 (1994).CrossRefADSGoogle Scholar
  30. M. Vergassola, Anomalous scaling for passively advected magnetic fields. Phys. Rev. E 53, 3021 (1996).CrossRefADSGoogle Scholar
  31. R. Benzi, L. Biferale & A. Wirth; Analytic calculation of anomalous scaling in random shell models for a passive scalar, Phys. Rev. Lett. 78, 4926, (1997).CrossRefADSGoogle Scholar
  32. R. Benzi, L. Biferale, S. Succi, F. Toschi; Intermittency and eddy-viscosities in dynamical models of turbulence. Phys. Fluids 11, 1221, (1999).MathSciNetCrossRefMATHADSGoogle Scholar
  33. R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaiolie, S. Succi, Extended Self Similarity in turbulent flows. Phys. Rev E48, R29 (1993);ADSGoogle Scholar
  34. R. Benzi, S. Ciliberto, C. Baudet, G. Ruiz Chavarria and R. Tripiccione, Extended self similarity in the dissipation range of fully developed turbulence. Europhys. Lett. 24, 275 (1993);CrossRefADSGoogle Scholar
  35. R. Benzi, S. Ciliberto, C. Baudet and G. Ruiz Chavarria. Physica D 80, 385 (1995);MathSciNetCrossRefMATHGoogle Scholar
  36. R. Benzi, S. Ciliberto, C. Baudet, G. Ruiz Chavarria, On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D, 80, 385–398, 1995.MathSciNetCrossRefMATHGoogle Scholar
  37. R. Benzi, L. Biferale, S. Ciliberto, M.V. Struglia, R. Tripiccione, Generalized scaling in fully developed turbulence, Physica D, 96, 162–181, 1996.CrossRefGoogle Scholar
  38. F. Toschi, G. Amati, S. Succi, R. Benzi, R. Piva, Intermittency and structure functions in channel flow turbulence, Phys. Rev. Lett, 82 (25), 5044–5049, 1999.CrossRefADSGoogle Scholar
  39. F. Toschi, G. Amati, S. Succi, R. Benzi, R. Piva, Intermittency and structure functions in channel flow turbulence, A. Pumir, Phys. Fluids, 8 (11), 3112–3127, 1996.CrossRefGoogle Scholar
  40. Benzi, Amati, Casciola, Toschi, Piva, Intermittency and scaling laws for wall bounded turbulence, Phys. Fluids, 11 (6), 1–3, 1999.Google Scholar
  41. Gualtieri, Casciola, Benzi, Amati, Piva, Scaling laws and intermittency in homogeneous shear flow, Submitted to Phys. Fluids., Nov. 2000.Google Scholar
  42. Jacob, Olivieri, Casciola, Experimental assessment of a new form of scaling law for near wall turbulence, Submitted to Phys. Fluids, Gen. 2001.Google Scholar
  43. Rogallo, Numerical experiments in homogeneous turbulence,NASA T.M., 81315, 1981.Google Scholar
  44. Benzi, Casciola, Gualtieri, Piva, Numerical evidence of a new similarity law in shear dominated flows, to appear in Comp. and Math.Google Scholar
  45. Toschi, Leveque, Ruiz-Chavarria, Shear effects in non-homogeneous turbulence, Phys. Rev. Lett, 85 (7), 1436–1439, 2000.MathSciNetCrossRefADSGoogle Scholar
  46. C. M. Casciola, R. Benzi, P. Gualtieri, B. Jacob, Double scaling and intermittency in shear dominated flows Phys. Rev. E., submitted.Google Scholar
  47. I. Arad, L. Biferale, I. Mazzitelli and I. Procaccia; Disentangling scaling properties in anisotropic and inhomogeneous Turbulence. Phys. Rev. Lett. 82, 5040, (1999).CrossRefADSGoogle Scholar
  48. I. Arad, L. Biferale and I. Procaccia: Nonperturbative Spectrum of Anomalous Scaling Exponents in the Anisotropic Sectors of Passively Advected Magnetic Fields, Phys. Rev. E 61, 2654, (2000)CrossRefADSGoogle Scholar
  49. L. Biferale and E. Toschi, Anisotropies in Homogeneous Turbulence: hierarchy of scaling exponents and intermittency of the anisotropic sectors Phys. Rev. Lett. 86, 4831 (2001)CrossRefADSGoogle Scholar
  50. L. Biferale and M. Vergassola; Isotropy vs anisotropy in small-scale turbulencePhys. Fluids 13, 2139 (2001).CrossRefADSGoogle Scholar
  51. I. Arad, B. Dhruva, S. Kurien, V.S. L’vov, I. Procaccia and K.R. Sreenivasan, Extraction of Anisotropic Contributions in Turbulent Flows Phys. Rev. Lett, 81, 5330 (1998)CrossRefADSGoogle Scholar
  52. I. Arad, V. L’vov and I. Procaccia, Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group, Phys. Rev. E 81, 6753 (1999).MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Roberto Benzi
    • 1
  • Luca Biferale
    • 1
  1. 1.Dept. of Physics and INFMUniversity of Rome, Tor VergataRomeItaly

Personalised recommendations