Skip to main content

Flutter Instability and Ill-Posedness in Solids and Fluid-Saturated Porous Media

  • Conference paper
Material Instabilities in Elastic and Plastic Solids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 414))

Abstract

For elastoplasticity with locally smooth yield surface and plastic potential, the nature, real or complex, of the squares of the acceleration wave-speeds is analyzed. Emphasis is laid on the effect that some features of the constitutive equations have on that nature. Specifically, our reference problem contemplates an infinite elastic-plastic body endowed with elastic isotropy and deviatoric associativity. In a second step, individual or simultaneous deviations with respect to these reference properties are analyzed. The performed linearized analyses are essentially intended to detect, in the course of a loading process, the onset of wave-speeds whose squares are complex, a phenomenon called flutter. Finite element simulations show how perturbations evolve in such a situation, and, as expected, the plastic loading condition plays a crucial role.

The problem is reconsidered in the context of fluid-saturated porous media whose solid skeleton is elastic-plastic. Unlike for single phase solids, flutter is not excluded in the reference situation where elasticity is isotropic and deviatoric plasticity holds. The propagation of waves of different lengths leads to make a distinction between the two phenomena of flutter instability and flutter ill-posedness. The introdution of a characteristic length in the elastic-plastic behaviour of the solid skeleton may imply the existence of an infimum wavelength below which instability modes do not exist, and well-posedness of the dynamic problem is recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach, J.D. (1975). Wave propagation in elastic solids, North-Holland, Amsterdam, The Netherlands.

    Google Scholar 

  • An, L. and Schaeffer, D.G. (1992). The flutter instability in granular flow. J. Mech. Phys. Solids, 40, 683–698.

    Article  MathSciNet  MATH  Google Scholar 

  • Asaro, R. and Rice, J.R. (1977). Strain localization in ductile single crystals. J. Mech. Phys. Solids, 25, 309–317.

    Article  MATH  Google Scholar 

  • Atkin, R. (1968). Completeness theorems for linearized theories of interacting continua. Quart. J. Mech. Appl. Math., 21, 171–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Baker, R. and Desai, C.S. (1982). Consequences of deviatoric normality in plasticity with isotropic strain-hardening. Int. J. Num. Anal. Meth. Geomechanics, 6, 383–390.

    Article  MATH  Google Scholar 

  • Bazant, Z.P. and Krizek, R.J. (1975). Saturated sand as an inelastic two-phase medium. J. of Engng. Mechanics Div., Transactions of the ASCE, 101-EM4, 317–332.

    Google Scholar 

  • Bazant, Z.P. and Lin, F.B. (1988). Non-local yield limit degradation. Int. J. Num. Meth. Engineering, 26, 1805–1823.

    Article  MATH  Google Scholar 

  • Bazant, Z.P. and Cedolin, L. (1991). Stability of Structures,Oxford University Press.

    Google Scholar 

  • Benallal, A., Billardon, R. and Geymonat, G. (1989). Conditions de bifurcation à l’intérieur et aux frontières pour une classe de matériaux non standards. Comptes-Rendus Académie des Sciences, Paris, t. 308, série II, 893–898.

    MathSciNet  Google Scholar 

  • Benallal, A. (1992). Ill-posedness and localization in solid structures. Computational Plasticity, D.R.J. Owen et al. eds., Pineridge Press, Swansea, U.K., 581–592.

    Google Scholar 

  • Benallal, A., Billardon, R. and Geymonat, G. (1993). Bifurcation and localization in rate-independent materials. Some general considerations. Bifurcation and Stability of Dissipative Systems, CISM course 327, Q.S. Nguyen ed., Springer-Verlag, Wien-New York, 1–44.

    Google Scholar 

  • Bigoni, D. and Hueckel, T. (1991). Uniqueness and localization -I. Associative and non-associative elastoplasticity. Int. J. Solids Structures, 28, 197–213.

    Article  MathSciNet  MATH  Google Scholar 

  • Bigoni, D. and Willis, J.R. (1994). A dynamical interpretation of flutter instability. Localisation and Bifurcation Theory for Soils and Rocks, R. Chambon, J. Desrues and I. Vardoulakis eds., Balkema, Rotterdam, The Netherlands, 51–58.

    Google Scholar 

  • Bigoni, D. and Loret, B. (1999). Effects of elastic anisotropy on strain localization and flutter instability in plastic solids. J. Mech. Phys. Solids, 47 (7), 1409–1436.

    Article  MathSciNet  MATH  Google Scholar 

  • Biot, M.A. (1956). Theory of propagation of elastic waves in a fluid saturated porous solid-I. Low-frequency range. J. of Acoustical Society of America, 28 (1), 168–179;

    Article  MathSciNet  Google Scholar 

  • Biot, M.A. (1956). II. Higher frequency range. J. of Acoustical Society of America, 28 (1), 179–191.

    Article  MathSciNet  Google Scholar 

  • Biot, M.A. and Willis, D.G. (1957). The elastic coefficients of the theory of consolidation. J. of Applied Mechanics, Transactions of the ASME, 24, 594–601.

    MathSciNet  Google Scholar 

  • Biot, M.A. (1973). Nonlinear and semilinear rheology of porous solids. J. of Geophysical Research, 78 (23), 4924–4937.

    Article  Google Scholar 

  • Beskos, D.E. (1989). Dynamics of saturated rocks -I. Equations of motion. J. of Engng. Mechanics Div., Transactions of the ASCE, 115, 982–995.

    Google Scholar 

  • Bowen, R.M (1976). Theory of mixtures. Continuum Physics, vol. 3, 1–127, A.C. Eringen ed., Academic Press, New York.

    Google Scholar 

  • Bowen, R.M. and Reinicke, K.M. (1978). Plane progressive waves in a binary mixture of linear elastic materials. J. of Applied Mechanics, Transactions of the ASME, 45, 493–499.

    Article  MATH  Google Scholar 

  • Bowen, R.M. (1982). Compressible porous media models by the use of the theory of mixtures. Int. J. Eng. Science, 20, 697–735.

    Article  MATH  Google Scholar 

  • Bowen, R.M. and Lockett, R.R. (1983). Inertial effects in poroelasticity. J. of Applied Mechanics, Transactions of the ASME, 50, 334–342.

    Article  MATH  Google Scholar 

  • Carroll, M.M. (1979). An effective stress law for anisotropic elastic deformation. J. of Geophysical Research, 84 (B13), 7510–7512.

    Article  Google Scholar 

  • Chen, P.J. (1973). Growth and decay of waves in solids. Mechanics of Solids, vol. 3, 303–401, C. Truesdell ed., Springer-Verlag, Berlin-Heidelberg, Germany.

    Google Scholar 

  • Cho, H. and Barber, J.R. (1999). Stability of the three-dimensional Coulomb friction law. Proc. R. Soc. Lond., A-455(1983), 839.

    Google Scholar 

  • Dowaikh, M.A. and Ogden, R.W. (1990). On surface waves and deformations in a pre-stressed incompressible elastic solid. IMA J. Appl. Math., 44, 261–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Dowaikh, M.A. and Ogden, R.W. (1991). Interfacial waves and deformations in pre-stressed elastic media. Proc. R. Soc. Lond., A-433, 313–328.

    Google Scholar 

  • Eringen, A.C. and Ingram, J.D. (1965). A continuum theory for chemically reacting media -I. Int. J. Eng. Science, 3, 197–212.

    Article  Google Scholar 

  • Green, A.E. and Naghdi, P.M. (1969). On basic equations for mixtures. Quart. J. Mech. Appl. Math., 22 (4), 427–438.

    Article  MathSciNet  MATH  Google Scholar 

  • Hilber, H.M., Hughes, T.J.R. and Taylor, R.M. (1977). Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engineering and Structural Dynamics, 5, 283–292.

    Article  Google Scholar 

  • Hill, R. (1962). Acceleration waves in solids. J. Mech. Phys. Solids, 10, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Holmes, P.J. (1977). Bifurcation to divergence and flutter in flow-induced oscillations: a finite dimensional analysis. J. of Sound and Vibrations, Transactions of the ASME, 55 (4), 471–503.

    Google Scholar 

  • Huseyin, K. (1978). Vibrations and Stability of Multiple Parameter Systems, Pitman, London, U.K.

    Google Scholar 

  • Lade, P.V. and Musante, H.M. (1977). Failure conditions in sand and remolded clay. Proceedings of the 9th International Conference Soil Mechanics and Foundation Engineering, Tokyo, Japan, vol. 1, 181–186.

    Google Scholar 

  • Loret, B. (1990). Acceleration waves in elastic-plastic porous media: interlacing and separation properties. Int. J. Eng. Science, 28 (12), 1315–1320.

    Article  MathSciNet  MATH  Google Scholar 

  • Loret, B., Prévost J.H. and Harireche, O. (1990). Loss of hyperbolicity in elastic-plastic solids with deviatoric associativity. Eur. J. Mechanics-A/Solids, 9 (3), 225–231.

    MATH  Google Scholar 

  • Loret, B. and Harireche, O. (1991). Acceleration waves, flutter instabilities and stationary discontinuities in inelastic porous media. J. Mech. Phys. Solids, 39 (5), 569–606.

    Article  MathSciNet  MATH  Google Scholar 

  • Loret, B. and Prévost, J.H. (1991). Dynamic strain localization in fluid-saturated porous media. J. of Engng. Mechanics Div., Transactions of the ASCE, 117 (4), 907–922.

    Google Scholar 

  • Loret, B. (1992). Does deviation from deviatoric associativity lead to the onset of flutter instability ?. J. Mech. Phys. Solids, 40 (6), 1363–1375.

    Article  MathSciNet  MATH  Google Scholar 

  • Loret, B., Martins, J.A.C. and Simóes, F.M.F. (1995). Surface boundary conditions trigger flutter instability in non-associative elastic-plastic solids, Int. J. Solids Structures, 32 (15), 2155–2190.

    Article  MATH  Google Scholar 

  • Loret, B., Simóes, F.M.F. and Martins, J.A.C. (1997). Growth and decay of acceleration waves in non-associative elastic-plastic fluid-saturated porous media. Mt. J. Solids Structures, 34 (13), 1583–1608.

    Article  MathSciNet  MATH  Google Scholar 

  • Loret, B. and Rizzi, E. (1997). Qualitative analysis of strain localization. Part II: Transversely isotropic elasticity and plasticity. Int. J. Plasticity, 13 (5), 501–519.

    Article  Google Scholar 

  • Mandel, J. (1962). Ondes plastiques dans un milieu indéfini à trois dimensions. J. de Mécanique, 1, 3–30.

    MathSciNet  Google Scholar 

  • Mandel, J. (1964a). Propagation des surfaces de discontinuité dans un milieu élasto-plastique, IUTAM Symposium Stress-waves in anelastic solids, Providence, H. Kolsky and W. Prager eds., Springer-Verlag, Berlin, Germany, 331–340.

    Google Scholar 

  • Mandel, J. (1964b). Conditions de stabilité et postulat de Drucker, IUTAM Symposium Rheology and Soil Mechanics, Grenoble, G. Kravchenko and P. Sirieys eds., Springer-Verlag, Berlin, Germany, 58–68.

    Google Scholar 

  • Martins, J.A.C. and Faria, L.O. (1991). Friction-induced surface instabilities and oscillations in nonlinear elasticity. Rencontres Scientifiques du Cinquantenaire, Rapport interne 124 du Laboratoire de Mécanique et Acoustique, Marseille, France, 31–50.

    Google Scholar 

  • Martins, J.A.C., Faria, L.O. and Guimarâes, J. (1992). Dynamic surface solutions in linear elasticity with frictional boundary conditions. Friction-Induced Vibration, Chatter, Squeal and Chaos, DE-vol. 49, R.A. Ibrahim and A. Soom eds., The American Society of Mechanical Engineers, New York, USA, 33–39.

    Google Scholar 

  • Martins, J.A.C., Faria, L.O. and Guimarâes, J. (1995). Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions. J. of Vibration and Acoustics, Transactions of the ASME, 117, 445–451.

    Google Scholar 

  • Martins, J.A.C., Simóes, F.M.F, Gastaldi, F. and Monteiro Marques, M. (1995). Dissipative graph solutions for a 2 degree-of-freedom quasistatic frictional contact problem. Int. J. Eng. Science, 33, 1959–1986.

    Article  MATH  Google Scholar 

  • Martins, J.A.C., Barbarin, S., Raous, M. and Pinto da Costa, A. (1999). Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction. Computer Methods in Applied Mechanics and Engineering, 177 (34), 289–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Moirot, F. (1998). Étude de la stabilité d’un équilibre en présence de frottement de Coulomb, application au crissement des freins à disque, Thèse de Doctorat, École Polytechnique, Palaiseau, France.

    Google Scholar 

  • Molenkamp, F. (1991). Material instability for drained and undrained behaviour -I. Shear-band generation. Int. J. Num. Anal. Meth. Geornechanics, 15, 147–168;

    Article  MATH  Google Scholar 

  • Molenkamp, F. (1991). II. Combined uniform deformation and shear-band generation. Int. J. Num. Anal. Meth. Geomechanics, 15, 169–180.

    Article  MATH  Google Scholar 

  • Mühlhaus, H.B. and Aifantis, E. (1991). A variational principle for gradient plasticity. Int. J. Solids Structures, 28, 845–857.

    Article  MATH  Google Scholar 

  • Needleman, A. and Ortiz, M. (1991). Effect of boundaries and interfaces on shear-band localization. Int. J. Solids Structures, 28 (7), 859–877.

    Article  MATH  Google Scholar 

  • Neilsen, M.K. and Schreyer, H.L. (1993). Bifurcations in elastic-plastic materials. Int. J. Solids Structures, 30 (4), 521–544.

    Article  MATH  Google Scholar 

  • Nguyen, Q.-S. (1994). Bifurcation and stability in dissipative media (plasticity, friction, fracture), Part 1. Applied Mechanics Review, Transactions of the ASME, 47 (1), 1–31.

    Google Scholar 

  • Nur, A. and Byerlee, J.D. (1971). An exact effective stress law for elastic deformation of rock with fluids. J. of Geophysical Research, 76 (26), 6414–6419.

    Article  Google Scholar 

  • O’Malley, R.E., Jr. (1991). Singular Perturbation Methods for Ordinary Differential Equations. Applied Mathematical Sciences, 89, Springer-Verlag, New York.

    Google Scholar 

  • Ottosen, N.S. and Runesson, K. (1991a). Acceleration waves in elastoplasticity. Int. J. Solids Structures, 28, 135–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Ottosen, N.S. and Runesson, K. (1991b). Properties of discontinuous bifurcation solutions in elastoplasticity. Int. J. Solids Structures, 27 (4), 401–421.

    Article  MathSciNet  MATH  Google Scholar 

  • Petryk, H. (1993). General theory of bifurcation and stability in time-independent plasticity. Bifurcation and Stability of Dissipative Systems, Q.S. Nguyen, ed., International Centre for Mechanical Sciences, Courses and Lectures, No. 327, Springer-Verlag, Wien, New York.

    Google Scholar 

  • Rice, J.R. (1975). On the stability of dilatant hardening for saturated rock masses. J. of Geophysical Research, 80, 1531–1536.

    Article  Google Scholar 

  • Rice, J.R. (1976). The localization of plastic deformation, Theoretical and Applied Mechanics, 14th IUTAM Congress, Delft, W.T. Koiter ed., North-Holland, Amsterdam, The Netherlands, 207–220.

    Google Scholar 

  • Rice, J.R. and Rudnicki, J.W. (1980). A note on some features of the theory of localization of deformation. Int. J. Solids Structures, 16, 597–605.

    Article  MathSciNet  MATH  Google Scholar 

  • Rizzi, E. and Loret, B. (1997). Qualitative analysis of strain localization. Part I: Transversely isotropic elasticity and isotropic plasticity. Int. J. Plasticity, 13 (5), 461–499.

    Article  MATH  Google Scholar 

  • Rizzi, E. and Loret, B. (1999). Strain localization in fluid-saturated anisotropic elastic-plastic porous media. Int. J. Eng. Science, 37, 235–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Rudnicki, J.W. and Rice, J.R. (1975) Conditions for the localization of deformations in pressure-sensitive dilatant materials. J. Mech. Phys. Solids, 23, 371–394.

    Article  Google Scholar 

  • Schaeffer, D. G. (1990). Instability and ill-posedness in the deformation of granular materials. Int. J. Num. Anal. Meth. Geornechanics, 14, 253–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C., and Taylor, R.L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 48, 101–118.

    Article  MATH  Google Scholar 

  • Simo, J.C., and Hughes, T.J.R. (1987). General return mapping algorithms for rate-independent plasticity. Constitutive Laws for Engineering Materials: Theory and Applications, C.S. Desai et al. eds., Elsevier Science, Amsterdam, The Netherlands, 221–231.

    Google Scholar 

  • Simóes, F.M.F. (1997). Instabilidades em problemas nâo associados da Mecânica dos Sólidos. Ph. D. dissertation, 12/12/1997, Universidade Técnica de Lisboa, Portugal.

    Google Scholar 

  • Simóes, F.M.F. and Martins, J.A.C. (1998). Instability and ill-posedness in sonic friction problems. Int. J. Eng. Science, 36, 1265–1293.

    Article  MATH  Google Scholar 

  • Simóes, F.M.F., Martins, J.A.C. and Loret, B. (1999). Instabilities in elastic-plastic fluid-saturated porous media: harmonic wave versus acceleration wave analyses. Int. J. Solids Structures, 36, 1277–1295.

    Article  MATH  Google Scholar 

  • Stoer, J. and Bulirsch, R. (1980). Introduction to numerical analysis, Springer-Verlag, New York, USA.

    Google Scholar 

  • Suo, Z., Ortiz, M. and Needleman, A. (1992). Stability of solids with interfaces. J. Mech. Phys. Solids, 40, 613–640.

    Article  MathSciNet  MATH  Google Scholar 

  • Truesdell, C. and Toupin, R. (1960). The Classical Field Theories, Encyclopedia of Physics, vol. IIl/l, S. Flügge ed., Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Truesdell, C. and Noll, W. (1965). The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics, vol. III/3, S. Flügge ed., Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Vermeer, P.A. and Brinkgreve, R.B.J. (1994). A new effective non-local strain-measure for softening plasticity. Localisation and Bifurcation Theory for Soils and Rocks, R. Chambon, J. Desrues and I. Vardoulakis eds., Balkema, Amsterdam, The Netherlands, 89–100.

    Google Scholar 

  • Vidyasagar, M. (1993). Nonlinear Systems Analysis, Prentice-Hall International Editions, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Wilkinson, J.H. (1965). The algebraic eigenvalue problem, Oxford University Press, Oxford. Ziegler, H. (1968). Principles of Structural Stability, Blaisdell, Waltham, Massachussets, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Loret, B., Simões, F.M.F., Martins, J.A.C. (2000). Flutter Instability and Ill-Posedness in Solids and Fluid-Saturated Porous Media. In: Petryk, H. (eds) Material Instabilities in Elastic and Plastic Solids. CISM International Centre for Mechanical Sciences, vol 414. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2562-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2562-5_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83328-5

  • Online ISBN: 978-3-7091-2562-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics