Advertisement

The Odd Stability of the Euler Beam

  • Gábor Domokos
Part of the International Centre for Mechanical Sciences book series (CISM, volume 436)

Abstract

In this part of the lecture notes we investigate a classical chapter of elastic stability from a new perspective. We show that even the first buckling mode in Euler’s problem becomes unstable at a second critical load parameter P L = 2.183P Euler and the only stable solution for P > P L is the straight bar in tension. We also show that if we discretize the beam into a sequence of n rigid links coupled by linear torsional springs, the described stability behaviour is only reflected correctly if n is an odd number.

Keywords

Boundary Value Problem Bifurcation Diagram Initial Value Problem Equilibrium Path Rigid Body Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Domokos, G., and Holmes, P. (1993). Euler’s problem and Euler’s method, or the discrete charm of buckling. Nonlin. Sci. 3: 109–151.CrossRefMATHMathSciNetGoogle Scholar
  2. Domokos, G. (1997). Static solitary waves as limits of discretization. Phil. Trans. R.Soc. London 355: 2099–2116.CrossRefMATHMathSciNetGoogle Scholar
  3. Euler, L. (1744). Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimivi proprietate gaudentes. In Opera Omnia., vol. 24. Lausanne: Bousquet. 231–297.Google Scholar
  4. Kârolyi, G., and Domokos, G. (1999). Symbolic dynamics of infinite depth. Physica D 134: 316–336.CrossRefMATHMathSciNetGoogle Scholar
  5. Kirchhoff, G. (1859). Üeber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J.f.Reine angew. Math (Crelle) 56: 285–313.CrossRefMATHGoogle Scholar
  6. Maddocks, J. (1984). Stability of nonlinearly elastic rods. Arch. Rat. Mech. Anal. 85: 311–354.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Gábor Domokos
    • 1
  1. 1.Department of Strength of MaterialsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations