Stability Bounds and Optimal Shape of Elastic Rods

  • Teodor M. Atanackovic
Part of the International Centre for Mechanical Sciences book series (CISM, volume 436)


In these Lecture notes we treat two problems of determining stability boundary for elastic rods (columns) and two optimization problems in which we determine the shape of the lightest rod, stable against buckling. In the problems of determining stability boundary we shall use generalized rod equations (corresponding to planar and spatial deformations) that take into account both shear deformation and axis extension and examine the influence of these effects on the stability boundary.


Variational Principle Bifurcation Point Optimal Shape Stability Bound Column Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alekseev, V. M., Tihomirov, V. M. and Fomin, S. V. (1979). Optimal Control. Moscow: Nauka, (in Russian).Google Scholar
  2. Antman, S. S., and Kenny, C. S. (1981). Large Buckled States of nonlinearly Elastic Rods under Torsion, Thrust and Gravity. Archive for Rational Mechanics and Analysis 76: 289–338.CrossRefMATHMathSciNetGoogle Scholar
  3. Antman, S. S., and Nachman, A. (1980). Large Buckled States of Rotating Rods. Nonlinear Analalvsis, Theory Applications 4: 303–327.MATHMathSciNetGoogle Scholar
  4. Antman, S. S., and Christoforis, M. L. (1997). Peculiar Instabilities due to the Clamping of Shearable rods. International Journal of Non—Linear Mechanics 32: 31–54.CrossRefMATHMathSciNetGoogle Scholar
  5. Antman, S. S. (1995). Nonlinear Problems of Elasticity. New York: Springer.CrossRefMATHGoogle Scholar
  6. Arthurs, A. M. (1980). Complementary Variational Principles. Oxford: Clarendon Press.MATHGoogle Scholar
  7. Atanackovic, T. M., and Glavardanov, V. B. (1996). Twisted axially loaded rod with shear and compressibility. Acta Mechanica 119: 119–130.CrossRefMATHGoogle Scholar
  8. Atanackovic, T. M., and Glavardanov, V. B. (2002) Buckling of a twisted and compressed rod. International Journal of Solids and Structures (in press).Google Scholar
  9. Atanackovic, T. M. (2001). On the optimal shape of a rotating rod. Transactions of ASAtE Journal of Applied. Mechanics 68: 860–864.CrossRefMATHMathSciNetGoogle Scholar
  10. Atanackovic, T. M. and Simic, S. S. (1999). On the optimal shape of Pfltiger column. European. Journal of Mechanics, Solids 18: 903–913.MATHMathSciNetGoogle Scholar
  11. Atanackovic, T. M. (1997). Stability Theory of Elastic rods. Singapore: World Scientific.MATHGoogle Scholar
  12. Atanackovic, T. M. (1987). Stability of rotating compressed rod with imperfections. Mathematical. Procedings of Cambridge Philospical. Society 101: 593–607.CrossRefMATHMathSciNetGoogle Scholar
  13. Atanackovic, T. M., Djukic Dj. S., and Jones, S. E. (1991). Effect of shear on the stability and nonlinear behavior of rotating rod. Archive of Applied. Mechanics 61: 285–294.CrossRefMATHGoogle Scholar
  14. Atanackovic, T. M. (2001). On a Vujanovic-type variational priniciple with application to rod theory. Ouoterly Journal Mechanics and Applied Mathematics 54: 1–11.CrossRefMATHMathSciNetGoogle Scholar
  15. Bazely, N., and Zwahlen, B. (1968). Remarks on the Bifurcation of Solutions of a Non-linear Eigenvalue problem. Archive of Rational Mechanics and Analysis 28: 51–58.CrossRefGoogle Scholar
  16. Beck, M., Knickung gerader Stabe durch Druck and conservative Torsion. Ingenieur Archiv 23: 231–255.Google Scholar
  17. Béda, B. P., Steindl, A., and Troger, H., Postbuckling of a twisted prismatic rod under terminal thrust. Dynamics and Stability of Systems 7: 219–232.Google Scholar
  18. Biezeno, C. B., and Grammel, R. (1953). Technische Dynamik. Berlin: Springer.CrossRefMATHGoogle Scholar
  19. Blasius, H. (1914). Träger kleinster Durchbiegung and Stäbe großter Knickfestigkeit bei gegebenem Materialverbrauch. Zeitsch. Math. Physik 62: 182–197.Google Scholar
  20. Brenner, J. L., and Alzer, H. (1991). Integral inequalities for concave functions with applications to special functions. Proceedings of Royal Society of Edinburgh 118A: 173–192.CrossRefMATHMathSciNetGoogle Scholar
  21. Chow, S-N., and Hale, J. K. (1982). Methods ofBifurration Theory. New York: Springer.CrossRefGoogle Scholar
  22. Churchill, R. V. (1969). Fourier Series and Boundary Value Problems. New York: McGraw-Hill.Google Scholar
  23. Clausen, T. (1851). Über die Form architektonischer Säulen. Bull. el, phvsico-math. Acad St. Pétersbourg 9: 369–380.Google Scholar
  24. Clément, Ph., and Descloux, J. (1991). A Variational Approach to a Problem of Rotating Rods. Archive for Rational Mechanics and Analysis 114: 1–13.CrossRefMATHMathSciNetGoogle Scholar
  25. Cox, S. J. (1992). The Shape of the Ideal Column. The Mathematical Intelligence?, 14: 16–24.CrossRefMATHGoogle Scholar
  26. Dacorogna, B., (1989). Direct Methods in the Calculus of Variations. Berlin: Springer.CrossRefMATHGoogle Scholar
  27. Golubitsky, M., and Schaeffer, D. (1985). Singularities and Groups in Bifurcation Theory. vol. I, New York: Springer.CrossRefMATHGoogle Scholar
  28. Glavardanov, V. G. and Atanackovic, T. M. (2001). Optimal Shape of a twisted and compressed rod. European. Journal ofMechanics, A/Solids 20: 795–809.CrossRefMATHGoogle Scholar
  29. Eliseyev, V. V. (1988). The non-linear dynamics of elastic rods. Prikl. Mathem. Mekh., 52: 635–641.Google Scholar
  30. Iljohin, A. A. (1979). Spatial problems of Nonlinear theory of Elastic rods. Kiev: Naukova Dumka (in Russian).Google Scholar
  31. Karlin, S., and Ziegler, Z. (1975). Some Inequalities for Generalized Concave Functions. Journal ofAppr ximation Theory 13: 267–293.MathSciNetGoogle Scholar
  32. Keller, J., The shape of the strongest column. Archive for Rational Mechanics and Analysis 5: 275–285.Google Scholar
  33. Keyfitz, B. L. (1986). Classification of one-state variable bifurcation problems up to codimension seven. D namics and Stability of Systems 1: 1–41.CrossRefMATHMathSciNetGoogle Scholar
  34. Kovari, K., Raumliche Verzweingungsprobleme des dunnen elastischen Stabes mit endlichen Verformungen. Ing. Archiv 37, 393–416 (1969).CrossRefMATHGoogle Scholar
  35. Oeuvres ds Lagrange, Serret, J. A. ed. (1867). Paris: Gauthier-Villars.Google Scholar
  36. Libai, A. (1992). Equations for the Nonlinear Planar deformation of Beams. Transactions of ASME Journal of Applied Mechanics 59: 1028–1030.CrossRefGoogle Scholar
  37. Lime, A. I. (1961). Analytical Mechanics. Moscow: F.M. editors (in Russian).Google Scholar
  38. Mitrinovic, D. S. (1970). Analytic Inequalities. Berlin: Springer.CrossRefMATHGoogle Scholar
  39. Odeh, F., and Tadjbakhsh, I. (1965). A Nonlinear Eigenvalue Problem for Rotating Rods. Archive of Rational Mechanics and Analysis 20: 81–94.CrossRefMATHMathSciNetGoogle Scholar
  40. Olhoff, N., and Rasmussen, S. (1977). On single and bimodal optimum buckling loads of clamped columns. International Journal of Solids and Structures 13: 605–614.CrossRefMATHGoogle Scholar
  41. Parter, S. V. (1970). Nonlinear Eigenvalue Problems for Some Fourth Order Equations: I Maximal solutions, SLIM Journal of Mathematical Analysis 1:437–457, and II: Fixed-point methods 1: 458–478.MATHMathSciNetGoogle Scholar
  42. Pflüger, A. (1975). Stabilitätsprobleme der Elastostatik. Berlin: Springer.CrossRefMATHGoogle Scholar
  43. Prager, W. and Taylor, J. E. (1968). Problems of optimal structural design. Journal of Applied Mechanics (transactions of ASME) 35: 102–106.CrossRefMATHGoogle Scholar
  44. Rabier, P. (1985). Topics in one parameter bifiuration problems. Berlin: Springer.Google Scholar
  45. Rabinowitz, P. D. (1977). Bifurcation Theorem for Potential Operators. Journal of Functional Analysis 25: 412–424.CrossRefMATHMathSciNetGoogle Scholar
  46. Ratzersdorfer, J. (1936). Die Knickfestigkeit von Stäben und Stabwerken. Wien: Springer.CrossRefMATHGoogle Scholar
  47. Sage, A. P. and White, C. C. (1977). Optimum System Control. New Jersey: Prentice-Hall, 2nd edition.Google Scholar
  48. Stodola, A. (1906). Steam Turbines. New York: D. Van Nostrand Company.Google Scholar
  49. Struwe, M. (1996). Variational Methods. New York: Springer, 2nd edition.CrossRefMATHGoogle Scholar
  50. Seiranian, A. (1984). On the Problem of Lagrange. Inzhenernvi Zh., Mekhanika Tverdoga Tela, 19: 101–111.Google Scholar
  51. Seyranian, A. P., Lund, E. and Olhoff, N. (1994). Multiple eigenvalues in structural optimization problems. Structural Optimization 8: 207–227.CrossRefGoogle Scholar
  52. Seiranyan, A. P. (1995). New Solutions to Lagrange’s Problem. Physics—Doklady 40: 251–253.MATHMathSciNetGoogle Scholar
  53. Tadjbakhsh, I., and Keller, J. (1962). Strongest columns and isoperimetric inequalities for eigenvalues. Transactions of ASME Journal of Applied. Mechanics 29: 159–164.CrossRefMATHMathSciNetGoogle Scholar
  54. Timoshenko, S. P., and Gere, J. M. (1961). Theory of Elastic Stability. New York: McGraw-Hill.Google Scholar
  55. Troger, H. and Steindl, A. (1991). A Nonlinear Stability and Bifurcation Theory. Wien: Springer.CrossRefGoogle Scholar
  56. Troesch, B. A. (1967). Integral inequalities for two functions. Archive of Rational Mechanics and Analysis 24: 412–424.CrossRefMathSciNetGoogle Scholar
  57. Vujanovic, B., and Jones, S. E. (1989). Variational Methods in Nonconservative Phenomena. Boston Academic Press.Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Teodor M. Atanackovic
    • 1
  1. 1.Faculty of Technical SciencesUniversity of Novi SadYugoslavia

Personalised recommendations