Advertisement

A Kinematic Method for Shakedown and Limit Analysis of Periodic Heterogeneous Media

  • Giulio Maier
  • Valter Carvelli
Part of the International Centre for Mechanical Sciences book series (CISM, volume 432)

Abstract

In this Chapter the kinematic (second, Koiter’s) shakedown theorem is applied to the representative volume of periodic heterogeneous media with Huber-Mises local plastic behavior. The adopted formulation of shakedown analysis is based on periodicity boundary conditions, conventional finite element modeling and penalization enforcement of plastic incompressibility. A cost-effective iterative solution procedure is discussed and computationally tested. Numerical tests and engineering applications are presented with reference to perforated plates and metal-matrix unidirectional fiber-reinforced composites.

Keywords

Boundary Element Method Limit Analysis Gauss Point Perforated Plate Macroscopic Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonnet, M. Maier, G. and Polizzotto, C. (1998). Symmetric Galerkin boundary element method. Appl. Mech. Reviews ASME 51: 669–704.CrossRefGoogle Scholar
  2. Carvelli, V., Cen, Z., Liu, Y. and Maier, G. (1999a). Shakedown analysis of defective pressure vessels by a kinematic approach. Arch. Appl. Mech. 69: 751–764.CrossRefMATHGoogle Scholar
  3. Carvelli, V., Maier, G. and Taliercio, A. (1999b). Shakedown analysis of periodic heterogeneous materials by a kinematic approach. J. Mech. Eng. (Strojnicky Časopis) 50: 229–240.Google Scholar
  4. Carvelli, V., Maier, G. and Taliercio, A. (2000). Kinematic limit analysis of periodic heterogeneous media. Comp. Mod. Eng. Sci. 1: 15–26.Google Scholar
  5. Cohn, M. Z., Maier, G. and Grierson, D. eds. (1979). Engineering plasticity by mathematical programming. Pergamon Press, New York.MATHGoogle Scholar
  6. Comi, C., Maier, G., Perego, U. (1992). Generalized variable finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables. Comput. Meth. Appl. Mech. Eng. 96: 133–171.MathSciNetCrossRefGoogle Scholar
  7. Corigliano, A., Maier, G. and Pycko, S. (1995). Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws. Int. J. Solids and Structures 32: 3145–3166.MathSciNetCrossRefMATHGoogle Scholar
  8. Corradi, L. and Maier, G. (1981). Finite element elastoplastic and limit analysis: some consistency criteria and their implications. In Wunderlich W., Stein E. and Bathe K.J., eds., Nonlinear Finite Element Analysis in Structural Mechanics. Springer Verlag, 290–306.CrossRefGoogle Scholar
  9. de Buhan, P. and Taliercio, A. (1988). Critère de résistance macroscopique pour les matériaux composites à fibres. C. R. Acad. Sci. Paris Série II 307: 227–232.Google Scholar
  10. Druyanov, B. and Roman, I. (1999). Conditions for shakedown of damaged elastic plastic bodies. European J. Mech. A/Solids 18: 641–651.CrossRefMATHGoogle Scholar
  11. Dvorak, G. J., Lagoudas, D. C. and Huang, C. M. (1994). Fatigue damage and shakedown in metal matrix composite laminates. Mech. Composite Mat. Struct. 1: 171–202.CrossRefGoogle Scholar
  12. Fiacco, A, V. and McCormick, G. P. (1968). Nonlinear programming sequential unconstrained minimization techniques. Wiley Publ. Co., New York. Reprinted by SIAM Publications in 1990.MATHGoogle Scholar
  13. Francescato, P. and Pastor, J. (1997). Lower and upper numerical bounds to the off-axis strength of unidirectional fiber-reinforced composites by limit analysis methods. European J. Mech. A/Solids 16: 213–234.Google Scholar
  14. Gao, D. Y., Ogden, R. W. and Stavroulakis, G.E. (2001). Nonsmooth-nonconvex mechanics. Kluwer Akademic Publ., Dordrecht.CrossRefMATHGoogle Scholar
  15. Hachemi, A. and Weichert, D. (1997). Application of shakedown theory to damaging inelastic material under mechanical and thermal loads. Int. J. Mech. Sci. 39: 1067–1076.CrossRefMATHGoogle Scholar
  16. Kaliszky, S. (1989). Plasticity: theory and engineering applications. Elsevier, Amsterdam, North Holland.MATHGoogle Scholar
  17. Koiter, W. T. (1960). General theorems for elastic-plastic solids. In Sneddon, J. N. and Hill, R., eds., Progress in solid mechanics. North Holland, Amsterdam. 165–221.Google Scholar
  18. König, J. A. (1987). Shakedown of elastic plastic structures. Elsevier, Amsterdam.Google Scholar
  19. König, J. A. and Kleiber, M. (1978). On a new method of shakedown analysis. Bulletin de l’Academie Polonaise des Sciences–Sér. des Scien. Techn. 26: 165–171.MATHGoogle Scholar
  20. Liu, Y. H., Cen, Z. Z. and Xu, B. Y. (1995). A numerical method for plastic limit analysis of 3-D structures. Int. J. Sol. Struct. 32: 1645–1658.CrossRefMATHGoogle Scholar
  21. Lubliner, J. (1990). Plasticity theory. Mc Milian Publ., New York.MATHGoogle Scholar
  22. Maier, G., Carvelli, V., Cocchetti, G. (2000). On direct methods for shakedown and limit analysis, Eur. J. Mech. A/Solids. 19: S79–S100.Google Scholar
  23. Maier, G., Carvelli, V., Taliercio, A. (2001). Limit and shakedown analysis of periodic heterogeneous media. In Lemaitre, J, ed., Handbook of Material Behaviour Models, Academic Press, San Diego, 10.8: 1017–1028.Google Scholar
  24. Maier, G. and Nappi, A. (1984). On bounding post-shakedown quantities by the boundary element method. Engineering Analysis 1: 223–229.CrossRefGoogle Scholar
  25. Nagtegaal, J. C., Parks, D. M. and Rice, J. R. (1974). On numerically accurate finite element solutions in the fully-plastic range. Comp. Meth. Appl. Mech. Eng. 4: 153–177.MathSciNetCrossRefMATHGoogle Scholar
  26. Polizzotto, C., Borino, G. and Fuschi, P. (1996) An extended shakedown theory for elastic-plasticdamage material models. European J. Mech.–A/Solids 15: 825–858.MathSciNetMATHGoogle Scholar
  27. Ponter, A. R. S. and Leckie, F. A. (1998a). Bounding properties of metal-matrix composites subjected to cyclic loading. J. Mech. Phys. Solids 46: 697–717.MathSciNetCrossRefMATHGoogle Scholar
  28. Ponter, A. R. S. and Leckie, F. A. (1998b). On the behaviour of metal matrix composites subjected to cyclic thermal loading. J. Mech. Phys. Solids 46: 2183–2199.MathSciNetCrossRefMATHGoogle Scholar
  29. Suquet, P. (1982). Analyse limite et homogénéisation. C. R. Acad. Sci. Paris Série II 296: 1355–1358.MathSciNetGoogle Scholar
  30. Taliercio, A. (1992). Lower and upper bounds to the macroscopic strength domain of a fiber-reinforced composite material. Int. J. Plasticity 8: 741–762.CrossRefMATHGoogle Scholar
  31. Tarn, J. Q., Dvorak, G. J. and Rao, M. S. M. (1975). Shakedown of unidirectional composites. Int. J. Sol. Struct. 11: 751–764.CrossRefMATHGoogle Scholar
  32. Weichert, D., Hachemi, A. and Schwabe, F. (1999a). Application of shakedown analysis to the plastic design of composites. Arch. Appl. Mech. 69: 623–633.CrossRefMATHGoogle Scholar
  33. Weichert, D., Hachemi, A. and Schwabe, F. (1999b). Shakedown analysis of composites. Mech. Res. Comm. 26: 309–318.CrossRefMATHGoogle Scholar
  34. Zhang, Y.G., Zhang, P. and Lu, M. W. (1993). Computational limit analysis of rigid-plastic bodies in plane strain. Acta Mech. Sol. Sinica 6: 341–348.Google Scholar
  35. Zhang, Y.G. (1995). An iterative algorithm for kinematic shakedown analysis. Comp. Meth. Appl. Mech. Eng. 127: 217–226.CrossRefMATHGoogle Scholar
  36. Zhang, Y.G. and Lu, M. W. (1995). An algorithm for plastic limit analysis. Comp. Meth. Appl. Mech. Eng. 126: 333–341.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Giulio Maier
    • 1
  • Valter Carvelli
    • 1
  1. 1.Technical University (Politecnico) of MilanMilanItaly

Personalised recommendations