Fundamentals of Direct Methods in Poroplasticity

  • Giulio Maier
  • Giuseppe Cocchetti
Part of the International Centre for Mechanical Sciences book series (CISM, volume 432)


A nonlinear initial-boundary-value coupled problem, central to poroplasticity, is formulated under the hypotheses of small deformations, quasi-static regime, full saturation, linear Darcy diffusion law and piecewise-linearized stable and hardening poroplastic material model. After a preliminary nonconventional multifield (mixed) finite element modelling, shakedown and upper bound theorems are presented and discussed, numerically tested and applied to dam engineering situations using commercial linear and quadratic programming solvers. Limitations of the presented methodology and future prospects are discussed in the conclusions.


Safety Factor External Action Solid Skeleton Yield Plane Plastic Multiplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Capurso, M. (1979). Some upper bound principles for plastic strains in dynamic shakedown of elastoplastic structures. J. Struct. Mech. 7: 1–20.CrossRefGoogle Scholar
  2. Ceradini, G. (1969). Sull’adattamento dei corpi elastoplastici soggetti ad azioni dinamiche. Giornale del Genio Civile. 415: 239–258.Google Scholar
  3. Cocchetti, G. and Maier, G. (1998). Static shakedown theorems in piecewiselinearized poroplasticity. Arch. Appl. Mech. 68: 651–661.CrossRefMATHGoogle Scholar
  4. Cocchetti, G. and Maier, G. (2000a). Shakedown analysis in poroplasticity by linear programming. Int. J. Num. Meth. Engng.. 47 (1–3): 141–168.MathSciNetCrossRefMATHGoogle Scholar
  5. Cocchetti, G. and Maier, G. (2000b). Upper bounds on postshakedown quantities in poroplasticity. In Weichert, D. and Maier, G., eds., Inelastic Analysis of Structures under Variable Repeated Loads. Kluwer. 289–314.Google Scholar
  6. Cocchetti, G. and Maier, G. (2001). A shakedown theorem in poroplastic dynamics. Rend. Acc. Naz. Lincei. (accepted for publication).Google Scholar
  7. Corigliano, A., Maier, G. and Pycko, S. (1995). Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws. Int. J. Sol. Struct.. 32: 3145–3166.MathSciNetCrossRefMATHGoogle Scholar
  8. Corradi, L. and Maier, G. (1973). Inadaptation theorems in the dynamics of elastic-work hardening structures. Ingenieur-Archiv. 43: 44–57.MathSciNetCrossRefMATHGoogle Scholar
  9. Corradi, L. and Maier, G. (1974). Dynamic non-shakedown theorem for elastic perfectly-plastic continua. J. Mech. Phys. Sol.. 22: 401–413.CrossRefMATHGoogle Scholar
  10. Corradi, L. and Zavelani, A. (1974). A linear programming approach to shakedown analysis of structures. Comp. Meth. Appl. Mech. Eng.. 3: 37–53.MathSciNetCrossRefGoogle Scholar
  11. Coussy O. (1995). Mechanics of porous continua. Chichester: John Wiley zhaohuan Sons.MATHGoogle Scholar
  12. Gao, D. Y. (1999). Duality principles in nonconvex systems; theory, methods and applications. Dordrecht: Kluwer Acad. Publ.Google Scholar
  13. Genna, F. (1991). Bilateral bounds for structures under dynamic shakedown conditions. Meccanica. 26: 37–46.CrossRefMATHGoogle Scholar
  14. Gross-Weege, J. (1997). On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int. J. Mech. Sci.. 39: 417–433.CrossRefMATHGoogle Scholar
  15. Hachemi, A. and Weichert, D. (1992). An extension of the static shakedown theorem to a certain class of inelastic materials with damage. Arch. Mech.. 44: 491–498.MATHGoogle Scholar
  16. Hachemi, A. and Weichert, D. (1997). Application of shakedown theory to damaging inelastic material under mechanical and thermal loads. Int. J. Mech. Sci.. 39: 1067–1076.CrossRefMATHGoogle Scholar
  17. Kaliszky, S. (1989). Plasticity: theory and engineering applications. Amsterdam: Elsevier. König, J. A. (1987). Shakedown of elastic plastic structures. Amsterdam: Elsevier.Google Scholar
  18. Lewis, R. W. and Schrefler, B. A. (1998). The finite element method in the static and dynamic deformation and consolidation of porous media. Chichester: John Wiley zhaohuan Sons, 2nd edition.Google Scholar
  19. Lloyd Smith, D., ed. (1990). Mathematical programming methods in structural plasticity. New York: Springer-Verlag.MATHGoogle Scholar
  20. Maier, G. (1969). Shakedown theory in perfect elastoplasticity with associated and nonassociated flow-laws: a finite element, linear programming approach. Meccanica. 4: 250–260.CrossRefMATHGoogle Scholar
  21. Maier, G. (1970). A matrix structural theory of piecewise-linear plasticity with interacting yield planes. Meccanica. 5: 55–66.Google Scholar
  22. Maier, G. (1973). Upper bounds on deformations of elastic-workhardening structures in the presence of dynamic and second-order effects. J. Struct. Mech.. 2: 265–280.CrossRefGoogle Scholar
  23. Maier, G. (1976). Piecewise linearization of yield criteria in structural plasticity. Solid Mechanics Archives. 2/3: 239–281.Google Scholar
  24. Maier, G., Carvelli, V. and Cocchetti, G. (2000). On direct methods for shakedown and limit analysis. European Journal of Mechanics A/Solids. Special Issue. 19: 79–100.Google Scholar
  25. Maier, G. and Comi, C. (1997). Variational finite element modelling in poroplasticity. In Reddy, B. D., ed., Recent Developments in Computational and Applied Mechanics. Barcelona: CIMNE, 180–199.Google Scholar
  26. Maier, G. and Vitiello, E. (1974). Bounds on plastic strains and displacements in dynamic shakedown of workhardening structures. ASME, J. Appl. Mech.. 41: 434–440.CrossRefMATHGoogle Scholar
  27. Pastor, J., Thai T.-H. and Francescato P. (2000). New bounds for the height limit of a vertical slope. Int. J. Num. Analyt. Meth. Geomech.. 24: 165–182.CrossRefMATHGoogle Scholar
  28. Polizzotto, C., Borino, G., Caddemi, S. and Fuschi, P. (1993). Theorems of restricted dynamic shakedown. Int. J. Mech. Sci.. 35: 787–801.CrossRefMATHGoogle Scholar
  29. Ponter, A. R. S. (1972). Deformation, displacement and work bounds for structures in a state of creep and subject to variable loading. ASME, Journal of Applied Mechanics. 39: 953–959.CrossRefGoogle Scholar
  30. Ponter, A. R. S. (1975). General displacement and work bounds for dynamically loaded bodies. J. Mech. Phy. Solids. 23: 151–163.MathSciNetCrossRefGoogle Scholar
  31. Ponter, A. R. S. and Williams, J. J. (1973). Work bounds and associated deformation of cyclically loaded creeping structures. ASME, J. Appl. Mech.. 40: 921–927.CrossRefGoogle Scholar
  32. Sloan, S. W. (1988). Lower bound limit analysis using finite elements and linear programming. Int. J. Num. Analytical Meth. Geomech.. 12: 61–77.CrossRefMATHGoogle Scholar
  33. Sloan, S. W. (1989). Upper bound limit analysis using finite elements and linear programming Int. J. Num. Analytical Meth. Geomech.. 13: 263–282.CrossRefMATHGoogle Scholar
  34. Tin-Loi, F. (1989). A constraint selection technique in limit analysis. Appl. Math. Modelling. 13: 442–446.CrossRefMATHGoogle Scholar
  35. Tin-Loi, F. (1990). A yield surface linearization procedure in limit analysis. Mech. Struct. zhaohuan Mach.. 18: 135–149.CrossRefGoogle Scholar
  36. Weichert, D. and Maier, G., eds. (2000). Inelastic analysis of structures under variable repeated loads. Dordrecht: Kluwer Academic Publishers.Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Giulio Maier
    • 1
  • Giuseppe Cocchetti
    • 1
  1. 1.Technical University (Politecnico) of MilanMilanItaly

Personalised recommendations