Implicit Standard Materials

  • Géry de Saxcé
  • Lahbib Bousshine
Part of the International Centre for Mechanical Sciences book series (CISM, volume 432)


We present a formulation for the non associated constitutive laws based on a generalization of Fenchel’s inequality and the concept of bipotential. Then, the normality rule appears as an implicit relation between dual variables. Examples of applications to the plasticity of soils and rocks, the cyclic plasticity of metals, the frictional contact and the plasticity with damage are presented.


Differential Inclusion Flow Rule Plastic Yielding Cyclic Plasticity Elastic Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, P.J. and Frederick, C.O. (1966). A Mathematical Representation of the Multiaxial Bausshinger Effects. C.E. G.B. Report RD/B/N 731.Google Scholar
  2. Bodovillé, G. (1999). Sur l’endommagement et les matériaux standard implicites. Comptes-rendus de 1 Académie des Sciences de Paris, série II 327: 715–720.MATHGoogle Scholar
  3. Bodovillé, G. and de Saxcé, G. (2001). Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach. European Journal of Mechanics A/Solids 20: 99–112.CrossRefMATHGoogle Scholar
  4. Bousshine, L., Chaaba, A. and de Saxcé, G. (2001). Softening in stress-strain curve for Drucker-Prager nonassociated plasticity. International Journal of Plasticity 17: 21–46.CrossRefMATHGoogle Scholar
  5. Burland, I.B. and Roscoe, K.H. (1968). On the generalized stress strain behavior of wet clay. In Heyman et al. Eds., Engineering Plasticity, Cambridge Press.Google Scholar
  6. Chaboche, J.L., Nouailhas, D., Pacou, D. and Paulmier, P. (1991). Modeling of the cyclic response and ratchetting effects on inconel-718 alloy. European Journal of Mechanics A/Solids 10: 101–121.Google Scholar
  7. Chaboche, J.L. (1994) Modeling of ratchetting: evaluation of various approaches. European Journal of Mechanics A/Solids 10: 101–121.Google Scholar
  8. de Saxcé, G. and Feng, Z.Q. (1991). New Inequation and Functional for Contact with Friction: the Implicit Standard Material Approach. International Journal Mechanics of Structures and Machines 19: 301–325.CrossRefGoogle Scholar
  9. de Saxcé, G. (1992). Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives. Comptes-rendus de l’Académie des Sciences de Paris, série II 314: 125–129.MATHGoogle Scholar
  10. de Saxcé, G. and Berga, A. (1994). Elastoplastic finite element analysis of soil problems with implicit standard material constitutive law. Revue Européenne des Eléments Finis 3: 411–456.MATHGoogle Scholar
  11. de Saxcé, G. (1995). The Bipotential Method, a New Variational and Numerical Treatment of the Dissipative Laws of Materials. Proceedings of the 10th International Conference on Mathematical and Computer Modeling and Scientific Computing, Boston.Google Scholar
  12. de Saxcé, G. and Hjiaj, M. (1997). Sur l’intégration numérique de la loi d’écrouissage cinématique non-linéaire. Actes du 3 eme Colloque National en Calcul des Structures, Giens (Var), 773–778.Google Scholar
  13. de Saxcé, G. and Feng, Z.Q. (1998). The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms International Journal of Mathematical and Computer Modelling 28: 225–245.CrossRefMATHGoogle Scholar
  14. Hiriart-Urruty, J.B. (1998). Optimisation et analyse convexe. Collection Mathématiques, Paris: PUF.Google Scholar
  15. Hjiaj, M., Bodovillé, G. and de Saxcé, G. (2000). Matériaux viscoplastiques et lois de normalité implicites. Comptes-rendus de l’Académie des Sciences de Paris, série IIb 328: 519–524.MATHGoogle Scholar
  16. Klärbring, A. (1992). Mathematical programming and augmented Lagrangean methods for frictional contact problems. In Currier ed., Proceedings Contact Mechanics International Symposium, PPUR, 369–390.Google Scholar
  17. Lemaitre, J. (1987). Formulation and identification od damage kinetic constitutive equation. In Krajcinovic et al., Eds., Continuum Damage Mechanics, Theory and Application, CISM Courses and Lectures, 295, NY: Springer-Verlag.Google Scholar
  18. Lemaitre, J. and Chaboche, J.L. (1990). Mechanics of Solid Materials, Cambridge University Press.Google Scholar
  19. Panagiatopoulos, P. D. (1975). Inequality Problems in Mechanics and Applications, Boston: Birkhauser.Google Scholar
  20. Vallée, C., Fortuné, D., Jessin, K. and Lainé, E. (1997). Lois de comportement coaxiales linéaires et matériaux standards implicites. Actes du 13 ème Congrès Français de Mécanique, Poitiers, 541–544.Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Géry de Saxcé
    • 1
  • Lahbib Bousshine
    • 2
  1. 1.University of LilleLilleFrance
  2. 2.University Hassan IICasablancaMorocco

Personalised recommendations