Skip to main content

Application of Shakedown Theory to Fatigue Analysis of Structures

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 432))

Abstract

Fatigue failure is final result of complex microscopic phenomena which occur under cyclic loading. Traditionally this phenomenon is studied by different ways depending on the fatigue regime and on the field of interest: fatigue limit analysis, life prediction in high or in low cycle fatigue, thermal fatigue... The diversity of proposed approaches is so great that design engineers meet many difficulties to have a clear idea of the fatigue calculations which have to be done. The purpose of this paper is to present an original unified approach to both high and low cycle fatigue based on shakedown theories and dissipated energy. The discussion starts with an explanation of fatigue phenomena at different scales (microscopic, mesoscopic, and macroscopic). Then some useful aspects of shakedown theory in relation with fatigue are presented. Applications to modeling of high cycle fatigue is then introduced: for instance, some multiaxial fatigue criteria (Dang Van, Papadopoulos) are essentially based on the hypothesis of elastic shakedown at the mesoscopic scale and therefore a bounded cumulated dissipated energy. In the low cycle fatigue regime, some recent results show that we can speak of a plastic shakedown at both mesoscopic and macroscopic scale and a cumulated energy bounded by the failure energy. These ideas are also justified by some infrared thermography test results permitting a direct determination of the fatigue limit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bignonnet, A. (1999). Fatigue design in automotive industry. In Dang Van, K. and Papadopoulos, I.V., eds, High Cycle Metal Fatigue, From Theory to Applications, CISM Courses and Lectures N° 392, International Center for Mechanical Sciences, Springer: Wien, New-York. 145–167

    Google Scholar 

  • Charkaluk, E., Bignonnet, A., Constantinescu, A. and Dang Van K. (2001). Fatigue design of structures under thermomechanical loading. Fat. Fracture of Eng. Mat. Struct (Accepted for publication).

    Google Scholar 

  • Dang Van, K. (1999). Fatigue analysis by the multiscale approach. In Dang Van, K. and Papadopoulos, I.V., eds, High Cycle Metal Fatigue, From Theory to Applications, CISM Courses and Lectures N° 392, International Center for Mechanical Sciences, Springer: Wien, New-York. 57–88.

    Google Scholar 

  • Drucker, D.C. (1963). On the macroscopic theory of inelastic stress-strain-time-temperature behaviour. Advances in Materials Research in the NATO Nations (AGAR Dograph 62) Pergamon press. 641–651.

    Google Scholar 

  • Fayard, J.L., Bignonnet, A. and Dang Van, K., (1996). Fatigue design criterion for welded structures. Fatigue Fract. Engng. Mater. Struct. 19: 723–729.

    Article  Google Scholar 

  • Halphen, B. and Nguyen, Q.S., (1975). Sur les matériaux standards généralisés. J. Mécanique, 14: 1–37.

    Google Scholar 

  • Koiter, W.T. (1960). General theorems for elastic-plastic solids. In Sneddon, J.N. and Hill, R., eds., Progress in Solid Mechanics, Amsterdam: Amsterdam: North-Holland. 165–221.

    Google Scholar 

  • Lemaitre, J. and Chaboche, J.L. (1990). Mechanics of Solid Materials. Cambridge: University Press.

    Book  MATH  Google Scholar 

  • Luong, M.P. and Dang Van, K. (1992) Infrared thermographie evaluation of fatigue limit in metal. Proc. 27th QUIRT Eurotherm Seminar, Paris.

    Google Scholar 

  • Luong, M.P. (1995). Infrared thermographie scanning of fatigue in metals. Nuclear Eng. and Design 158, 363–376

    Article  Google Scholar 

  • Maitournam, H. (1999). Finite elements applications numerical tools and specific fatigue problems. In Dang Van, K. and Papadopoulos, I.V., eds, High Cycle Metal Fatigue, From Theory to Applications, CISM Courses and Lectures N° 392, International Center for Mechanical Sciences, Springer: Wien, New-York. 169–187

    Google Scholar 

  • Mandel, J., Halphen, B. and Zarka, J. (1977). Adaptation d’une structure élastoplastique à écrouissage cinématique. Mech. Res. Comm., 4: 309–314.

    Article  MATH  Google Scholar 

  • Nguyen, Q.S. (2000). Stability and Nonlinear Solid Mechanics. J. Wiley & Sons.

    Google Scholar 

  • Orowan, E. (1939). Theory of the fatigue of metals. Proc. Roy. Soc. London, A, 171: 79–106.

    Article  MATH  Google Scholar 

  • Papadopoulos, I.V. (1987). Fatigue Polycyclique des Métaux: une Nouvelle Approche. Ph.D. Dissertation, Ecole Nationale des Ponts et Chaussées, Paris.

    Google Scholar 

  • Papadopoulos, I.V. (1999). Multiaxial fatigue limit criterion of metals. In Dang Van, K. and Papadopoulos, I.V., eds, High Cycle Metal Fatigue, From Theory to Applications, CISM Courses and Lectures N° 392, International Center for Mechanical Sciences, Springer: Wien, New-York. 89–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Dang Van, K. (2002). Application of Shakedown Theory to Fatigue Analysis of Structures. In: Weichert, D., Maier, G. (eds) Inelastic Behaviour of Structures under Variable Repeated Loads. International Centre for Mechanical Sciences, vol 432. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2558-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2558-8_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83687-3

  • Online ISBN: 978-3-7091-2558-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics