Advanced Material Modelling in Shakedown Theory

  • Dieter Weichert
  • Abdelkader Hachemi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 432)


The aim of this lecture is to present possibilities how to extend the validity of shakedown theory to other than linear elastic-ideal plastic or linear elastic- unlimited linear hardening material behaviour in conjunction with the validity of the normality rule. More precisely, the following items will be discussed: application of the General Standard Material Model, introduction of material damage in shakedown theory, use of no-associated flow rules and the notion of the Sanctuary of Elasticity.


Residual Stress Elastic Domain Associate Flow Rule Ductile Damage Shakedown Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boulbibane, M. (1995). Application de la Théorie d’Adaptation aux Milieux Elastoplastiques Non-Standards: Cas des Géomatériaux. Ph. D. Dissertation, University of Lille.Google Scholar
  2. Boulbibane M., and Weichert D. (1997). Application of shakedown theory to soils with non-associated flow-rules. Mech. Res. Comm. 24: 513–519.MathSciNetCrossRefMATHGoogle Scholar
  3. Dorosz, S. (1976). An upper bound to maximum residual deflections of elastic-plastic structures at shakedown. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 24: 167–174.MATHGoogle Scholar
  4. Druyanov, B. and Roman, I. (1998). On adaptation (shakedown) of a class of damaged elastic plastic bodies to cyclic loading. Eur. J. Mech. A/Solids 17: 71–78.CrossRefMATHGoogle Scholar
  5. Feng, X.Q. and Yu, S.W. (1995). Damage and shakedown analysis of structures with strain-hardening. Int. J. Plasticity 11: 237–249.MathSciNetCrossRefMATHGoogle Scholar
  6. Green, A.E. and Naghdi, P.M. (1965). A general theory of elastic-Plastic continuum. Arch. Rat. Mech. Analys. 18: 251–281.MathSciNetMATHGoogle Scholar
  7. Hachemi, A. and Weichert, D. (1992). An extension of the static shakedown theorem to a certain class of inelastic materials with damage. Arch. Mech. 44: 491–498.MATHGoogle Scholar
  8. Hachemi, A. (1994). Contribution à l’Analyse de l’Adaptation des Structures Inélastiques avec Prise en Compte de l’Endommagement. Ph. D. Dissertation, University of Lille.Google Scholar
  9. Hachemi, A. and Weichert, D. (1997). Application of shakedown theory to damaging inelastic material under mechanical and thermal loads. Int. J. Mech. Sci. 39: 1067–1076.CrossRefMATHGoogle Scholar
  10. Halphen, B. and Nguyen, Q.S. (1975). Sur les matériaux standards généralisés. J. Mécanique 14: 39–63.MATHGoogle Scholar
  11. Hill, R. (1950). The Mathematical Theory of Plasticity. Oxford.Google Scholar
  12. Ju, J.W. (1989). On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. Int. J. Solids Struct. 25: 803–833.CrossRefMATHGoogle Scholar
  13. Kachanov, L.M. (1958). Time of the rupture process under creep conditions. Izv. Akad. Nauk, S.S.R., Otd. Tech. Nauk 8: 26–31.Google Scholar
  14. König, J.A. (1987). Shakedown of Elastic-Plastic Structures. Amsterdam: Elsevier.Google Scholar
  15. Koiter, W.T. (1956). A new general theorem on shake-down of elastic-plastic structures. Proc. Koninkl. Ned. Akad. Wet. B59: 24–34.MathSciNetMATHGoogle Scholar
  16. Koiter, W.T. (1960). General theorems for elastic-plastic solids. In Sneddon, I.N. and Hill, R., eds. Progress in Solid Mechanics. Amsterdam: North-Holland. 165–221.Google Scholar
  17. Lee, E.H. (1969). Elasto-plastic deformation at finite strains. J. Appl. Mech. 36: 1–6.CrossRefMATHGoogle Scholar
  18. Lemaitre, J. (1985) A continuous damage mechanics model for ductile fracture. J. Engng. Mat. Tech. 107: 83–89.CrossRefGoogle Scholar
  19. Lemaitre, J. and Chaboche, J.L. (1985). Mécanique des matériaux solides. Paris: Dunod.Google Scholar
  20. Lemaitre, J. (1987). Formulation unifiée des lois d’évolution d’endommagement. C. R. Acad. Sci. 305: 1125–1130.MathSciNetMATHGoogle Scholar
  21. Loret, B. (1987). Elastoplasticité à Simple Potentiel. Paris: Presse E.N des Ponts et Chaussées.Google Scholar
  22. Maier, G. (1969). Shakedown theory in perfect elastoplasticity with associated and non-associated flow-laws. Meccanica 6: 250–260.CrossRefGoogle Scholar
  23. Melan, E. (1936). Theorie statisch unbestimmter Systeme aus ideal-plastischem Baustoff. Sitber. Akad. Wiss., Wien, Abt. HA 145: 195–218.MATHGoogle Scholar
  24. Melan, E. (1938). Zur Plastizität des räumlichen Kontinuums. Ing. Arch. 9: 116–126.CrossRefMATHGoogle Scholar
  25. Nayroles, B. and Weichert, D. (1993). La notion de sanctuaire d’élasticité et l’adaptation des structures. C.R. Acad. Sci. 316: 1493–1498.MATHGoogle Scholar
  26. Polizzotto, C., Borino, G. and Fuschi, P. (1996). An extended shakedown theory for elastic-plasticdamage material models. Eur. J. Mech. A/Solids 15: 825–858.MathSciNetMATHGoogle Scholar
  27. Polizzotto, C., Borino, G. and Fuschi, P. (2001). Weak forms of shakedown for elastic-plastic structures exhibiting ductile damage. Meccanica 36: 49–66.MathSciNetCrossRefMATHGoogle Scholar
  28. Pycko, S. and Mrôz, Z. (1992). Alternative approach to shakedown as a solution of a min-max problem. Acta Mechanica 93: 205–222.MathSciNetCrossRefMATHGoogle Scholar
  29. Shichun, W. and Hua, L. (1990). A kinetic equation for ductile damage at large plastique strain. J. Mat. Proc. Tech. 21: 295–302.CrossRefGoogle Scholar
  30. Weichert, D. and Gross-Weege, J. (1988). The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition. Int. J. Mech. Sci. 30: 757–767.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Dieter Weichert
    • 1
  • Abdelkader Hachemi
    • 1
  1. 1.Aachen University of TechnologyAachenGermany

Personalised recommendations