Basic Definitions and Results

  • Géry de Saxcé
Part of the International Centre for Mechanical Sciences book series (CISM, volume 432)


The experimental tests show that many engineering structures subjected to variable repeated loads exhibit plastic strains. Above a critical value α a of the load factor, they collapse by ratchet or alternating plasticity. On the contrary, below α a , the plastic deformations are stabilized and the dissipation is bounded in time. We say that the structure shakes down. Firstly, the standard plasticity model is briefly recalled. Next, we define the basic tools of the fictitious elastic and residual fields. The statical approach due to Melan allows to characterize the shakedown. The kinematical approach due to Halphen gives a description of the collapses. The end of the lecture is devoted to useful concepts of mathematical programming and non smooth mechanics


Differential Inclusion Plastic Yielding Residual Stress Field Elastic Domain Dissipation Power Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Coffin, L. F. (1954). Transaction ASME, 76: 923.Google Scholar
  2. Ekeland, I., and Temam, R. (1975). Convex analysis and variational problems, NY: North Holland. Fenchel, W. (1949). On conjugate convex functions. Canadian Journal of Mathematics 1: 73–77.Google Scholar
  3. Halphen, B. and Nguyen Quoc Son (1975). Sur les matériaux standard généralisés, Journal de Mécanique 14: 39–63.MATHGoogle Scholar
  4. Halphen, B. (1978). Periodic solutions in plasticity and viscoplasticity, in Nemat-Nasser ed., Proceedings of IUTAM Symposium on Variational Methods in Mechanics of Solids, Oxford: Pergamon Press.Google Scholar
  5. Jospin, R., Nguyen Dang, H. and de Saxcé, G. (1991). Direct limit analysis of elbows by finite element and mathematical programing. Proceedings of the Int. Symposium “Plasticity 91”, Grenoble (France).Google Scholar
  6. Koiter, W.T. (1960). General theorems for elasto-plastic solids. In Progress in Solid Mechanics, Volume 1. Manson, S.S. (1954). Nat. Advise. Comm. Aero. Tech., Note 2. 933.Google Scholar
  7. Melan, E. (1936). Theory statisch unbestimmter Systeme aus ideal plastischen baustoff. Sitz Ber. Akad. Wiss. Wien 11a 145: 195.MATHGoogle Scholar
  8. Moreau, J.J. (1963). Fonctionnelles sous-différentiables. Comptes-rendus de l’Académie des Sciences de Paris, Série A 257: 4117–4119.MathSciNetMATHGoogle Scholar
  9. Moreau, J.J. (1966). Séminaire sur les Equations aux Dérivées Partielles, Fonctionnelles Convexes, Paris: Collège de France.Google Scholar
  10. Panagiatopoulos, P.D. (1975). Inequality Problems in Mechanics and Applications, Boston: Birkhauser.Google Scholar
  11. Save, M., Massonnet, C. and de Saxcé, G. (1997). Plastic Limit Analysis of Plates, Shells and Disks, NY: North Holland.MATHGoogle Scholar
  12. Taylor, A. E. (1965). General theory of functions and integration, Blaisdell: Waltham.MATHGoogle Scholar
  13. Weichert, D., Gross-Weege, J. (1988). Assessment of elasto-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition. International Journal of Mechanical Science 30: 757–767.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Géry de Saxcé
    • 1
  1. 1.University of LilleLilleFrance

Personalised recommendations