Romansy 14 pp 445-452 | Cite as

Design and Realization of Jogging Johnnie

  • M. Gienger
  • K. Löffler
  • F. Pfeiffer
Part of the International Centre for Mechanical Sciences book series (CISM, volume 438)


The realization of biped walking robots is a challenging problem. Aspects of actuation, control, sensorics and hardware realization are key topics to achieve a high performance of these machines. This paper adresses design and realization of the biped walking robot “Johnnie” that is currently being developed at the Technical University of Munich. A general design approach for walking machines is proposed. Further, the mechanical design and the actuation of the robot is presented. The sensor system is able to measure the required information to solve the dynamic equations of motion of the system.


Ground Plane Ground Reaction Force Joint Torque Biped Robot Joint Angular Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baerveldt, A.-J.; Klang, R. (1997). A Low-cost and Low-weight Attitude Estimation System for an Autonomous Helicopter. In Proceedings of the 1997 IEEE International Conference on Intelligent Engineering Systems, Budapest, Hungary, 391–395.Google Scholar
  2. Galway, R. D. (1980). A Comparison of Methods for Calibration and Use of Multi-Component Strain Gauge Wind Tunnel Balances. Report LR-600, Ottawa: National Research Council Canada.Google Scholar
  3. Hahn, U. (1994). Calculation of Anthropometric Data for Human Body Segments. Implemented in Software Program “Calcman3d”.Google Scholar
  4. Hirai, K.; Hirose, M.; Takenaka, T. (1998). The Development of Honda Humanoid Robot. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, 160–165.Google Scholar
  5. Löffler, K.; Gienger, M. (2000). Control of a Biped Jogging Robot. In Proceedings of the 6th International Workshop on Advanced Motion Control, Nagoya, Japan, 307–323.Google Scholar
  6. Pfeiffer, F.; Eltze, J.; Weidemann, H.-J. (1995). The TUM-Walking Machine. In Intelligent Automation and Soft Computing, 307–323.Google Scholar
  7. Raibert, M. (1986). Legged Robots that Balance. Cambridge: MIT Press.Google Scholar
  8. Rossmann, Th. (1998). Eine Laufmaschine fir Rohre. Fortschritt-Berichte VDI, Reihe 8, Nr. 732, Düsseldorf: VDI-Verlag.Google Scholar
  9. Waseda University (1985). Development of Waseda Robot - The study of Biomechanisms at Kato Laboratory. In http:/lwww.humanoidrise.waseda.acjp/history.html Google Scholar
  10. Weidemann, H.-J. (1993). Dynamik und Regelung von sechsbeinigen Robotern und natürlichen Hexapoden. Fortschritt-Berichte VDI, Reihe 8, Nr. 362, Düsseldorf: VDI-Verlag.Google Scholar
  11. Yamaguchi, J.; Takanishi, A.; Kato, I. (1994). Development of a Biped Walking Robot Adapting to a Horizontally Uneven Surface. In Proceedings of the 1994 IEEE/RSJlnternational Conference on Intelligent Robots and Systems, Munich, Germany, 160–165.Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • M. Gienger
    • 1
  • K. Löffler
    • 1
  • F. Pfeiffer
    • 1
  1. 1.Angewandte MechanikTechnische Universität MünchenGermany

Personalised recommendations