Skip to main content

Integration of Torque Controlled Arm with Velocity Controlled Base for Mobile Manipulation

  • Chapter
Romansy 14

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 438))

Abstract

A mobile manipulation system often involves combining more than one robot together, typically a manipulator arm and a mobile base. To implement force and motion control with dynamic compensation, a torque-controlled system is necessary. However, a torque-controlled robot is not always available. In fact, most commercially available mobile bases are velocity-controlled. This paper presents a method for combining a torque-controlled arm and a velocity-controlled base, while performing a force and motion task. The operational space formulation using a consistent set of integrated arm-base robot dynamics is employed in a mobile manipulation task of polishing an aircraft canopy. The torque controlled arm compensates for the dynamics introduced by the mobile base. The added mobility of the base enables the arm to cover the entire workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angeles, J., Habib, M., and Lopez-Cajûn, C. (1988). Efficient algorithms for the kinematic inversion of redundant robot manipulators. The International Journal of Robotics and Automation 3 (1): 106–116.

    Google Scholar 

  • Chang, K., and Khatib, O. (1995). Manipulator control at kinematic singularities: A dynamically consistent strategy. Proc. IEEE/RSIInt. Conference on Intelligent Robots and Systems 3: 84–88.

    Google Scholar 

  • Grabits, G. A. (1986). Polishing aerospace transparencies. Conference on Robotic Solutions in Aerospace Manufacturing MS86–203 1–22. Orlando, Florida.

    Google Scholar 

  • Holmberg, R., and Khatib, O. (2000). Development and control of a holonomic mobile robot for mobile manipulation tasks. International Journal of Robotics Research 19 (11): 1066–1074.

    Article  Google Scholar 

  • Hsu, P., Hauser, J., and Sastry, S. (1988). Dynamic control of redundant manipulators. IEEE Intl. Conf. Robotics and Automation 1: 183–187.

    Google Scholar 

  • Jamisola, R., Lim, T. M., Oetomo, D., Ang, M., Khatib, O., and Lim, S. Y. (2002). The operational space formulation implementation to aircraft canopy polishing using a mobile manipulator. Accepted to the Proc. of Intl. Conf. Robotics and Automation, May 2002.

    Google Scholar 

  • Khatib, O., Yokoi, K., Brock, O., Chang, K., and A.Casal. (1999). Robots in human environments: Basic autonomous capabilities. The International Journal of Robotics Research 18 (7): 684–696.

    Article  Google Scholar 

  • Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J Robotics and Automation RA-3(1):43–53.

    Google Scholar 

  • Klein, C., and Huang, C. (1983). Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans. Sys., Man., Cyber. SMC-13(3): 245–250.

    Google Scholar 

  • Nakamura, Y., and Hanafusa, H. (1987). Optimal redundancy control of robot manipulators. International Journal of Robotics Research 6 (1): 32–42.

    Article  ADS  Google Scholar 

  • Whitney, D. (1969). Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Machine Sys. MMS-10(2): 47–53.

    Google Scholar 

  • Yoshikawa, T. (1984). Analysis and control of robot manipulators with redundancy. In Brady, M., and Paul, R., eds., Robotics Research. Cambridge, MA: MIT Press. 735–747.

    Google Scholar 

  • Yoshikawa, T. (1985). Manipulability of robotic mechanisms. Intl. J. Robotics Research 4 (2): 3–9.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Oetomo, D., Ang, M.H., Jamisola, R., Khatib, O. (2002). Integration of Torque Controlled Arm with Velocity Controlled Base for Mobile Manipulation. In: Bianchi, G., Guinot, JC., Rzymkowski, C. (eds) Romansy 14. International Centre for Mechanical Sciences, vol 438. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2552-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2552-6_22

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-2554-0

  • Online ISBN: 978-3-7091-2552-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics