Romansy 14 pp 127-139 | Cite as

Configuration Control of a Flexible Micro Robotic Arm for Catheter-type Microrobot

  • Jérôme Forêt
  • Saliha Boudjabbi
  • Antoine Ferreira
  • Michel De Mathelin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 438)


The paper presents a control strategy for a hyper redundant micro robotic arm that has the particularity to have either a) discrete joints: only a small finite number of position are allowed within min and max bounds and b) continuous joints: the joint can move continuously within its min and max bounds. Technologically speaking the second case being much harder to perform, our problem is double: a)solve inverse kinematics for this kind of system and b) maximize the number of discrete joints. We show that the hybrid nature of the manipulator make these problems non-trivial and we develop a parallel evolution strategy and genetic algorithm in response to this dual problem. Simulation results show the efficiency of the proposed control strategy.


Shape Memory Alloy Inverse Kinematic Submodular Function Shape Memory Alloy Wire Redundant Manipulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Ohta, “Experimental cather-type micromachine for repair in narrow complex areas”, in: 3’ d Int. Micromachine Symposium, Tokyo, Japan, pp. 147–151 (1997).Google Scholar
  2. A. Krupa,G. Moreland M. De Mathelin “Modeling and vision based control of a micro endoscope head actuated with shape memory alloy wires”, in: 3’d Journées du Pôle Micro-Robotique, Paris, France (2000).Google Scholar
  3. A. Sadamoto,et al. “Wireless micromachine for in-pipe visual inspection and the possibility of biomedical applications”, in: Proc. of 32m Int. Symp. on Robotics, Seoul, Soyh Korea (2001).Google Scholar
  4. P. Bidaud, J. Szewczyk, N. Troisfontaine, J-C. Guinot, “ A distributed SMA actuator system and associated self-guiding control strategy for a scalable endoscope steering device”, in: Proc. IFToMM ROMANSY 13, Zakopane, Poland, pp. 447–455 (2000).Google Scholar
  5. K. Ikuta, M. Tsukamoto, S. Hirose “Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope”, in: Proc. IEEE Int. Conf. on Robotics and Automation, Philadelphia, PA, pp. 427–430 (1997).Google Scholar
  6. S. Kumar, I. Kassim, V. Aasari “Design of a vision-guided microrobotic colonos-copy system”, in: Jour. of Advanced Robotics, Vol.14, N.2, pp. 87–104 (2000).Google Scholar
  7. P. Baptiste, J-P. Taillard, “Command method of a trunk like microrobot”, in: Proc. 2”d Japan-France Congress on Mechatronics, Takamatsu, Japan, pp. 723–726 (1994).Google Scholar
  8. K. Andersen, J. Angeles, “Kinematic Inversion of Robotic Manipulators in the Presence of Redundancies”, Int. Journal of Robotic Research, Vol. 8, N. 6, pp. 80–97 (1989)CrossRefGoogle Scholar
  9. H. Seraji, “Configuration Control of Redundant Manipulators: Theory and Implementation”, IEEE Trans. On Robotics and Automation, Vol. 5, No. 4 pp. 472–490 (1989)CrossRefGoogle Scholar
  10. H. Seraji, R. Colbaugh, “Improved Configuration Control for Redundant Robots”, Int. Journ. Robotic. Systems. pp. 809–927 (1990)Google Scholar
  11. L. Sciavicco B. Siciliano, “A Solution Algorithm to the Inverse Kinematic Problem for Redundant Manipulator”, IEEE Jour. on Roboics and Automation Vol. 4, No. 4, pp. 403–410 (1988)CrossRefGoogle Scholar
  12. G-S. Shirikjian, J-W. Burdick, “Kinematically optimal hyper-redundant manipulator configurations”, IEEE Trans. on Robotic and Automation,Vol.11, N°6, pp.794–806.Google Scholar
  13. H. Hong D. Vasaru, “Survey on non-linear optimization”, Technical Report, Johanes Kepler Univesity Linz, Autria (1996)Google Scholar
  14. K. Murota, “Discrete Convex Analysis Exposition on Conjugacy and Duality”, Proc. Int. Coll. Combinatics and Graph Theory, Hungary, pp. 1–27 (1996).Google Scholar
  15. A. Frank, “Applications of submodular functions”, Survey in Combinatorics, pp. 85–136, London Mathematical Society Lecture Note Series 187, Cambridge Univ. Press, (Ed. K. Walker ) 1993Google Scholar
  16. R.P. Paul, “Robot Manipulators”, Cambridge, MA: MIT Press, 1981Google Scholar
  17. J-D. Schaffer, “Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms”, PhD. Dissertation, Vanderbilt University, Nashville (1984).Google Scholar
  18. J. Cai, G. Thierauf, “Solution of Mixed-Discrete Structural Optimization Problems with Parallel Evolution Strategies”, OPTI95, Chap. 17, Florida, pp. 201–205 (1995).Google Scholar
  19. Z. Michalewicz, “Genetic Algorithms + Data Strucutues = Evolution Programs”, AI Series. Springer-Verlag, New York (1994).CrossRefGoogle Scholar
  20. J. Horn, N. Nafpliotis, “Multi Objective Optimization Using the Niched Pareto Genetic Algorithm”, Illigal Report, No. 93005 (1993).Google Scholar
  21. T. Bäck, F. Hoffineister, H-P. Shwefel, “A Survey of Evolution Strategies”, Proc. 4” Int. Conf On GA pp. 2–9, Morgan Kaufman Publisher, San Mateo (1991).Google Scholar
  22. H.P. Schwefel, “Collective Phenomena in Evolutionary Systems”, 31S Annual Meeting of the International Society for General System Research, Vol.2, pp.1025–1033, Budapest (1987)Google Scholar
  23. T. Kohonen, “Self-organized formation of topologically correct feature map”, Biological Cybernetics, Vol. 43, pp. 59–69 (1982).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Jérôme Forêt
    • 1
  • Saliha Boudjabbi
    • 1
  • Antoine Ferreira
    • 1
  • Michel De Mathelin
    • 2
  1. 1.Laboratoire de Vision et RobotiqueENSI de BourgesFrance
  2. 2.Laboratoire des Sciences de l’ImageInformatique et de la Télédétection, IPLStrasbourgFrance

Personalised recommendations