Advertisement

Hydrodynamics of Surface Tension Dominated Flows

  • D. T. Papageorgiu
Part of the International Centre for Mechanical Sciences book series (CISM, volume 428)

Abstract

This series of lectures is concerned with the fluid dynamics of surface tension driven flows. Surface tension forces arise at the interface between two fluids (e.g. water and air) and can be of central importance in applications where a separating (and in many cases moving) interface is part of the process. Examples include, but are not limited to, the dynamics of liquid films, jets, and drops.

Keywords

Surface Tension Peclet Number Liquid Bridge Bubble Surface Absolute Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aris, R. 1962 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Prentice Hall, New Jersey.MATHGoogle Scholar
  2. [2]
    Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, England.Google Scholar
  3. [3]
    Bel Fdhila, R. and Duineveld, P.C. 1996 The effect of surfactants on the rise of a spherical bubble at high Reynolds and Peclet numbers. Phys. Fluids, 8, pp. 310–321.Google Scholar
  4. [4]
    Berger, S.A. 1988 Initial-value stability analysis of a liquid jet. SIAM J. Appl. Math., 48, pp. 973–991.MATHGoogle Scholar
  5. [5]
    Brenner, M.P., Lister, J.R. and Stone, H.A.Google Scholar
  6. [6]
    Briggs, R.J. 1964 Electron Stream Interaction With Plasmas. MIT Press, Cambridge, MA.Google Scholar
  7. [7]
    Clift, R., Grace, J.R. and Weber, M.E. 1978 Bubbles, Drops and Particles. Academic Press, New York.Google Scholar
  8. [8]
    Chandrasekhar, S. 1961 Hydrodynamic ad Hydromagnetic Stability. Clarendon Press, Oxford.Google Scholar
  9. [9]
    Chauhan, A., Maldarelli, C., Rumschitzki, D.S. and Papageorgiou, D.T. 1996 Temporal and spatial instability of an inviscid compound jet. Rheol Acta, 35, pp. 567–583.CrossRefGoogle Scholar
  10. [10]
    Chauhan, A., Maldarelli, C., Papageorgiou, D.T. and Rumschitzki, D.S. 1999 Linear instability of a two-phase compound jet. IUTAM Symposium on Nonlinear Singularities in Deformation and Flow, D. Durbn and J.R.A. Pearson eds, Kluwer Academic.Google Scholar
  11. [11]
    Chauhan, A., Maldarelli, C., Rumschitzki, D.S. and Papageorgiou, D.T. 2000 The capillary instability of a viscous compound jet. J. Fluid Mech., in the press.Google Scholar
  12. [12]
    Chen, J. and Stebe, K. 1997 Surfactant-induced retardation of the thermocapillary migration of a droplet. J. Fluid Mech., 340, pp. 35–60.Google Scholar
  13. [13]
    Chen, Y.-J. and Steen, P. 1997 Dynamics of inviscid capillary breakup: Collapse and pinchoff of a film bridge. J. Fluid Mech., 341, pp. 245–267.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    Chorin,A.J. 1968 Math. Comput., 22, pp. 745–762.Google Scholar
  15. [15]
    Day, R.F., Hinch, E.J. and Lister, J.R. 1998 Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett., 80, p. 704.CrossRefGoogle Scholar
  16. [16]
    Denn, M.M. 1980 Drawing of liquids to form fibers. Annu. Rev. Fluid Mech., 12, p. 365.Google Scholar
  17. [17]
    Drazin, P.G. and Reid, W.H. 1981 Hydrodynamic Stability. Cambridge University Press, London.MATHGoogle Scholar
  18. [18]
    Edwards, D.A., Brenner, H. and Wasan, D.T. 1991 Interfacial Transport Processes and Rheology. Butterworth-Heinemann Series in Chemical Engineering, Massachusetts.Google Scholar
  19. [19]
    Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett., 71, pp. 3458–3460.CrossRefGoogle Scholar
  20. [20]
    Eggers, J. 1995 Theory of drop formation. Phys. Fluids, 7, pp. 941–953.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Eggers, J. 1997 Rev. Modern Phys..Google Scholar
  22. [22]
    Elzinga, E.R. and Banchero, J.T. 1961 Some observations on the mechanics of drops in liquid-liquid systems, AIChE J., 7, pp. 394–399.CrossRefGoogle Scholar
  23. [23]
    Ennis, B.J., Li, J., Tardos, G.I. and Pfeffer, R. 1990 The influence of viscosity on the strength of an axially strained pendular liquid bridge, Chem. Eng. Sci., 45, p. 3071.CrossRefGoogle Scholar
  24. [24]
    Entov and Hinch, E.J. 1997Google Scholar
  25. [25]
    Felderhof, B.U. 1968 Dynamics of free liquid films. J. Chem. Phys., 49, pp. 44–51.CrossRefGoogle Scholar
  26. [26]
    Forest, M.G. and Wang, Q. 1990 Change-of-type behavior in viscoelastic slender jet models. Theoret. Comput. Fluiud Dynam., 2, pp. 1–25.MATHGoogle Scholar
  27. [27]
    Frumkin, A.N. and Levich, V.G. 1947 On surfactants and interfacial motion, Zhur. Fiz. Khim., 21, p. 1183. (In Russian.)Google Scholar
  28. [28]
    Garner, F.H. and Skelland, H.P. 1955 Some factors afffecting droplet behavior in liquid-liquid systems, Chem. Engng. Sci., 4, pp. 149–158.CrossRefGoogle Scholar
  29. [29]
    Happel, J. and Brenner, H. 1962 Low Reynolds Number Hydrodynamics. Prentice Hall.Google Scholar
  30. [30]
    Harper, J.F. 1973 On bubbles with small immobile adsorbed films rising in liquids at low Reynolds numbers. J. Fluid Mech., 58, pp. 539–545.CrossRefMATHGoogle Scholar
  31. [31]
    He, Z., Dagan, Z. and Madarelli, C. 1991 The size of stagnant caps of bulk soluble surfactant on interfaces of translating fluid droplets. J. Colloid and Interface Sci., 146, pp. 442–451.CrossRefGoogle Scholar
  32. [32]
    Hertz, C.A. and Hermanrud, B. 1983 A liquid compound jet. J. Fluid Mech., 131, pp. 271–287.CrossRefGoogle Scholar
  33. [33]
    Huang, W.S. and Kintner, R.C. 1969 Effects of surfactants on mass transfeer inside drops, AIChEJ., 15, pp. 735–744.CrossRefGoogle Scholar
  34. [34]
    Johnson, T.A. ad Patel, V.C. 1999 Flow past a sphére up to a Reynolds number of 300. J. Fluid Mech., 378, pp. 19–70.CrossRefGoogle Scholar
  35. [35]
    Keller, J.B., Rubinow, S.L. and Tu, Y.O. 1973 Spatial instability of a jet. Phys. Fluids, 16, pp. 2052–2055.CrossRefGoogle Scholar
  36. [36]
    Kim, H. and Subramanian, R. 1989a Thermocapillary migration of a droplet with insoluble surfactant, I. Surfactant cap, J. Colloid and Int. Sci., 127, pp. 417–430.CrossRefGoogle Scholar
  37. [37]
    Kim, H. and Subramanian, R. 1989b Thermocapillary migration of a droplet with insoluble surfactant, II. General case, J. Colloid and Int. Sci., 130, pp. 112–125.CrossRefGoogle Scholar
  38. [38]
    Kroger, R., Berg, S., Delgado, A. and Rath, H.J. 1992 Stretching behavior of large polymeric and Newtonian liquid bridges in plateau simulation. J. Non-Newtonian Fluid Mech., 45, p. 385.Google Scholar
  39. [39]
    Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
  40. [40]
    Lee, H.C. 1974 Drop formation in a liquid jet. IBM J. Res. Dev., 18, pp. 364–369.CrossRefMATHGoogle Scholar
  41. [41]
    Levich, V.G. 1962 Physicochemical Hydrodynamics. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  42. [42]
    Leib, S.J. and Goldstein, M.E. 1986 The generation of capillary instabilities on a liquiud jet. J. Fluid Mech., 168, pp. 479–500.Google Scholar
  43. [43]
    Mansour, N.N. and Lundgren, T.S. 1990 Satellite formation in capillary jet breakup. Phys. Fluids A, 2, pp. 1141–1144.CrossRefGoogle Scholar
  44. [44]
    McConnell, A.J. 1957 Applications of Tensor Analysis. Dover, New York.Google Scholar
  45. [45]
    McKinley, G.H. and Tripathi, A. 2000 J. Rheol.,in the press.Google Scholar
  46. [46]
    McLaughlin, J.B. 1996 Numerical simulation of bubble motion in water. J. Colloid Interface Sci., 184, pp. 614–625.Google Scholar
  47. [47]
    Meseguer, J. 1983 The breaking of axisymmetric liquid bridges. J. Fluid Mech., 130, pp. 12–151.CrossRefMathSciNetGoogle Scholar
  48. [48]
    Middleman, S. 1995 Modeling Axisymmetric Flows. Dynamics of Films, Jets ad Drops. Academic Press, San Diego, CA.Google Scholar
  49. [49]
    Nadim, A. and Bohran, A. 1989 Effects of surfactant on the motion and deformation of a droplet in thermocapillary migration, PhysicoChemical Hydrodynamics, 11, pp. 753–764.Google Scholar
  50. [50]
    Papageorgiou, D.T. 1995a On the breakup of viscous liquid threads. Phys. Fluids, 7 (7), pp. 1529–1544.CrossRefMATHMathSciNetGoogle Scholar
  51. [51]
    Papageorgiou, D.T. 1995b Analytical description of the breakup of liquid jets. J. Fluid Mech., 301, pp. 109–132.Google Scholar
  52. [52]
    Papageorgiou, D.T. 1996 Description of jet breakup. Advances in Multi-Fluid Flows, Coward, Papageorgiou, Renardy and Sun eds, SIAM Proceedings Series, pp. 171–198.Google Scholar
  53. [53]
    Papageorgiou, D.T. and Orellana, 0. 1998 Study of cylindrical jet breakup using one-dimensional approximations of the Euler equations. SIAM J. Appl. Math., 59 No 1, pp. 286–317.CrossRefGoogle Scholar
  54. [54]
    Patankar, S.V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere Publishers.Google Scholar
  55. [55]
    Peyret, R. an Taylor, T.D. 1983 Computational Methods for Fluid Flow. Springer-Verlag.Google Scholar
  56. [56]
    Pozrikidis, C. 1999Google Scholar
  57. [57]
    Pozrikidis, C. 1996 Introduction to the Boundary Integral Method. Cambridge Texts in Applied Mathematics Serries, Cambridge Universiity Press.Google Scholar
  58. [58]
    Raymond, D.R. and Zieminski, S.A. 1971 AIChEJ, 17, pp. 57–65.CrossRefGoogle Scholar
  59. [59]
    Rayleigh, Lord 1879 On the instability of jets. Proc. Lond. Math. Soc., 10, p. 4.Google Scholar
  60. [60]
    Rayleigh, Lord 1879 On the instability of a cylinder of viscous liquid under capillary forces. Phil. Mag., 34, p. 145.CrossRefGoogle Scholar
  61. [61]
    Renardy, M. 1994 Some comments on the surface-tension driven breakup (or lack of it) of viscoelastic jets. J. Non-Newtonian Fluid Mech., 51, p. 97.CrossRefGoogle Scholar
  62. [62]
    Richards, J.R., Lenhoff, A.M. and Beris, A.N. 1994 Dynamic breakup of liquid-liquid jets. Phys. Fluids, 6, p. 2640.CrossRefMATHGoogle Scholar
  63. [63]
    Ryskin, G. and Leal, L.G. 1982 Numerical solution of free boundary problems in fluid mechanics. J. Fluid Mech., 148, pp. 1–17.CrossRefGoogle Scholar
  64. [64]
    Sadhal, s. and Johnson, R. 1983 Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film–exact solution. J. Fluid Mech., 126, pp. 237–250.CrossRefMATHGoogle Scholar
  65. [65]
    Sanz, A. and Meseguer, J. 1985 One-dimensional linear analysis of a compound jet. J. Fluid Mech., 159, pp. 55–68.CrossRefMATHGoogle Scholar
  66. [66]
    Schulkes, R.M.S.M.S. 1993 Dynamics of liquid jets revisited. J. Fluid Mech., 250, pp. 635–650.Google Scholar
  67. [67]
    Schulkes, R.M.S.M.S. 1993 Nonlinear dynamics of liquid columns. Phys. Fluids, A 5, pp. 2121–2130.Google Scholar
  68. [68]
    Stone, H.A. 1990 A simple derivation of time dependent convective diffusion equation for surfactant transport along a deforming interface, Phys. Fluids A, 2, p. 111.CrossRefGoogle Scholar
  69. [69]
    Stone, H.A. and Leal, L.G. 1989 Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech., 198, p. 399.CrossRefGoogle Scholar
  70. [70]
    Subramanian, R.S. 1992 The motion of bubbles and drops in reduced gravity, in Transport Processes in Bubbles, Drops and Particles, Subramanian, Chabra and DeKee, Eds., Hemisphere Publishing, New York, NY.Google Scholar
  71. [71]
    Sweet, R.G. 1964 Stanford University Technical Report No. 1722.Google Scholar
  72. [72]
    Takemura, F. and Yabe, A. 1999 Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water, J. Fluid Mech., 378, pp. 319–334.CrossRefGoogle Scholar
  73. [73]
    Tannerhill, C., Anderson, D.A. and Pletcher, R.H. 1997 Computational Fluid Mechanics and Heat Transfer. Taylor & Francis. Washington, DC.Google Scholar
  74. [74]
    Taylor, G.I. 1959 The dynamics of thin sheets of fluid. II. Waves on fluid sheets. Proc. Roy. Soc., A 253, pp. 296–312.CrossRefGoogle Scholar
  75. [75]
    Ting, L. and Keller, J.B. 1990 Slender jets and thin sheets with surface tension. SIAM J. Appl. Math., 50, pp. 1533–1546.CrossRefMATHMathSciNetGoogle Scholar
  76. [76]
    Tjahjadi, M., Stone, H.A. and Ottino, J.M. 1992 Satellite and subsatellite formation in capillary breakup. J. Fluid Mech., 243, p. 297.CrossRefGoogle Scholar
  77. [77]
    Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous liquid. Proc. Roy. Soc., A 150, pp. 322–337.CrossRefMATHGoogle Scholar
  78. [78]
    Tsamopoulos, J., Chen, T.-Y. and Borkar, A. 1992 Viscous oscillations of capillary bridges. J. Fluid Mech., 235, p. 579.CrossRefMATHGoogle Scholar
  79. [79]
    Wang, Y. 1999 Theoretical study of bubble motion in surfactant solutions. Ph.D. Thesis, New Jersey Institute of Technology.Google Scholar
  80. [80]
    Wang, Y., Papageorgiou, D.T. and Maldarelli, C. 1999 Increased mobility of as surfactant-retarded bubble at high bulk concentrations, J. Fluid Mech., 390, pp. 251–270.CrossRefMATHGoogle Scholar
  81. [81]
    Wang, Y., Papageorgiou, D.T. and Maldarelli, C. 2000 Using surfactants to control the formation and size of wakes behind moving bubbles at order one Reynolds numbers, J. Fluid Mech., submitted.Google Scholar
  82. [82]
    Wong, H., Rumschitzki, D.S. amd Maldarelli, C.Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • D. T. Papageorgiu
    • 1
  1. 1.University HeightsNewarkUSA

Personalised recommendations